Compruebe si la secuencia $$\frac{1}{n}+\frac{1}{n+1}+...+\frac{1}{2n}$$ es convergente. Realmente no sé cómo empezar.
Respuestas
¿Demasiados anuncios?$$\frac{1}{n+n}\leq \frac{1}{n}\leq \frac{1}{n}\\\frac{1}{n+n}\leq \frac{1}{n+1}\leq \frac{1}{n}\\\frac{1}{n+n}\leq \frac{1}{n+2}\leq \frac{1}{n}\\\frac{1}{n+n}\leq \frac{1}{n+3}\leq \frac{1}{n}\\.\\.\\.\\\frac{1}{n+n}\leq \frac{1}{n+n}\leq \frac{1}{n}\\\\sumation\\n\frac{1}{n+n}\leq \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+...\frac{1}{n+n}\leq n\frac{1}{n}\\\frac{n}{n+n}\leq \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+...\frac{1}{n+n}\leq \frac{n}{n}\\\frac{1}{2}\leq \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+...\frac{1}{n+n}\leq \frac{1}{1}\\ $$ $$\lim_{n\rightarrow \infty }a_{n}=\lim_{n\rightarrow \infty }\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}=\\=\lim_{n\rightarrow \infty }\frac{1}{n}(\frac{1}{1+\frac{1}{n}}+\frac{1}{1+\frac{2}{n}}+\frac{1}{1+\frac{3}{n}}+...+\frac{1}{1+\frac{n}{n}})=\\\lim_{n\rightarrow \infty }\frac{1}{n}\sum_{i=1}^{n}\frac{1}{1+\frac{i}{n}}=\\\int_{0}^{1}\frac{1}{1+x}dx=ln(1+x) \\=ln(2)$$
$$\lim_{n\rightarrow \infty }a_{n}=\lim_{n\rightarrow \infty }\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}=\\=\lim_{n\rightarrow \infty }\frac{1}{n}(\frac{1}{1+\frac{1}{n}}+\frac{1}{1+\frac{2}{n}}+\frac{1}{1+\frac{3}{n}}+...+\frac{1}{1+\frac{n}{n}})=\\\lim_{n\rightarrow \infty }\frac{1}{n}\sum_{i=1}^{n}\frac{1}{1+\frac{i}{n}}=\\\int_{0}^{1}\frac{1}{1+x}dx=ln(1+x) \\=ln(2)$$