$A = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \cdots$
$B = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$
$A + B = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \cdots$
$2A = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \cdots$
$2A = A + B$
$A - B = 0$
$0 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$
Utilizando la expansión de Taylor para $\ln(1+x)$
$\ln(2) = 1 -\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$
¿En qué me he equivocado?