$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\int_{0}^{\infty}\expo{-2ax}\,{\sin^{2}\pars{bx} \over x^{2}}\,\dd x = \int_{0}^{\infty}\expo{-2ax}\,\ \overbrace{{1 - \cos\pars{2bx} \over 2}}^{\ds{\sin^{2}\pars{bx}}}\ \overbrace{\int_{0}^{\infty}t\expo{-xt}\,\dd t}^{\ds{1 \over x^{2}}}\ \,\dd x \\[5mm] = &\ {1 \over 2}\,\Re\int_{0}^{\infty}t \int_{0}^{\infty}\bracks{% \expo{-\pars{t + 2a}x} - \expo{-\pars{t + 2a - 2b\ic}x}}\,\dd x\,\dd t \\[5mm] = &\ {1 \over 2}\int_{0}^{\infty}t\bracks{% {1 \over t + 2a} - {t + 2a \over \pars{t + 2a}^{2} + \pars{2b}^{2}}}\,\dd t \\[5mm] = &\ {1 \over 2}\int_{0}^{\infty}\bracks{% 1 - {2a \over t + 2a} - {-2a\pars{t + 2a} + \pars{t + 2a}^{2} \over \pars{t + 2a}^{2} + \pars{2b}^{2}}}\,\dd t \\[5mm] = & {1 \over 2}\int_{0}^{\infty}\bracks{% -\,{2a \over t + 2a} + 2a\,{t + 2a \over \pars{t + 2a}^{2} + \pars{2b}^{2}} + {\pars{2b}^{2} \over \pars{t + 2a}^{2} + \pars{2b}^{2}}}\,\dd t \\[5mm] & = \left.{1 \over 2}\,2a\ln\pars{\root{\pars{t + 2a}^{2} + \pars{2b}^{2}} \over t + 2a} + b\arctan\pars{t + 2a \over 2b}\right\vert_{\ t\ =\ 0}^{\ t\ \to\ \infty} \\[5mm] = &\ \bbx{\ds{-\,{1 \over 2}\,a\ln\pars{a^{2} + b^{2} \over a^{2}} + b\arctan\pars{b \over a}}} \end{align}