Tarea: Factorizar $x^3+3$ en $\mathbb{R}$ y $GF(7)$
Creo que la solución es $x^3+3$ en ambos casos, por lo que el polinomio ya es irreductible. Si mi suposición es correcta, ¿cómo puedo demostrarlo?
Tarea: Factorizar $x^3+3$ en $\mathbb{R}$ y $GF(7)$
Creo que la solución es $x^3+3$ en ambos casos, por lo que el polinomio ya es irreductible. Si mi suposición es correcta, ¿cómo puedo demostrarlo?
Para comprobar si un polinomio cúbico es irreducible sobre un campo dado, basta con comprobar si $f$ tiene raíces en ese campo (¿por qué?).
En $GF(7)$ esto es fácil: sólo hay $7$ posibles raíces, por lo que simplemente se puede evaluar $f(x)$ para todos $x \in GF(7)$ .
En $\mathbb{R}$ Recuerda que todo polinomio de grado impar tiene al menos una raíz. Puedes demostrarlo utilizando el teorema del valor intermedio, ya que los polinomios son funciones continuas. Dado esto, ¿cuándo $x^3 + 3 = 0$ en $\mathbb{R}$ ? Una vez que hayas encontrado una raíz, puedes utilizar la división larga de polinomios para encontrar una factorización.
El polinomio $x^3 + 3$ (o $x^3 -3,$ no hace ninguna diferencia ya que $-1$ es un cubo) es irreducible en el campo de los enteros $\bmod p$ para todos los primos que pueden escribirse en números enteros (no necesariamente positivos) como $p = 7 u^2 + 3 uv+9v^2.$ Este es un teorema debido a Jacobi. Tales primos hasta $4000$ son
7 13 19 31 37 43 79 97 109 127
139 157 163 181 199 211 223 229 241 277
283 313 331 337 349 373 379 397 409 421
433 457 463 487 541 571 601 607 631 673
691 709 733 739 751 769 811 823 829 859
877 883 907 937 1033 1039 1051 1063 1069 1087
1123 1129 1153 1171 1201 1213 1231 1237 1279 1291
1297 1327 1381 1423 1429 1447 1453 1459 1471 1483
1489 1567 1579 1627 1657 1663 1693 1699 1723 1741
1747 1753 1777 1789 1801 1831 1873 1951 1987 1993
1999 2011 2017 2053 2083 2089 2113 2137 2143 2161
2239 2281 2293 2311 2347 2371 2377 2437 2467 2473
2503 2521 2539 2551 2557 2593 2647 2659 2677 2683
2689 2707 2719 2731 2749 2767 2791 2797 2833 2857
2887 2917 2953 3037 3061 3121 3163 3169 3229 3259
3271 3301 3307 3313 3331 3361 3391 3433 3457 3463
3469 3511 3541 3547 3559 3571 3583 3613 3637 3643
3673 3691 3697 3709 3727 3769 3793 3823 3877 3919
3931 3943
Para conseguir $7,$ tomamos $(u=1,v=0),$ Para conseguir $13,$ tomamos $(u=1,v=-1),$ Para conseguir $19,$ tomamos $(u=1,v=1),$ y así sucesivamente según sea necesario.
Ummm. $x^3 -3$ como tres factores lineales distintos en el campo de los enteros $\bmod p$ para todos los primos que pueden escribirse en números enteros (no necesariamente positivos) como $p = u^2 + uv+61v^2.$ Tales primos hasta $4000$ son
61 67 73 103 151 193 271 307 367 439
499 523 547 577 613 619 643 661 727 757
787 853 919 967 991 997 1009 1021 1093 1117
1249 1303 1321 1399 1531 1543 1549 1597 1609 1621
1669 1759 1783 1861 1867 1879 1933 2029 2131 2179
2203 2221 2251 2269 2287 2341 2383 2389 2617 2671
2713 2803 2851 2971 3001 3019 3049 3067 3079 3109
3181 3187 3217 3253 3319 3343 3373 3499 3517 3529
3607 3631 3733 3739 3847 3853 3889 3907 3967
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.