Utilizando el hecho de que
$$ \prod_{k=0}^{n}(12+6k) = 6^{n+1}(n+2)! = 3^{n+1} 2^{n+2} \frac{(n+2)!}{2} $$
vemos que el $n^{\text{th}}$ El término es
$$ \begin{align*} (-1)^n \frac{\prod_{k=0}^{n}(1+3k)}{\prod_{k=0}^{n}(12+6k)} &= \frac{\prod_{k=0}^{n}\left(\frac{1}{3}-k\right)}{\frac{(n+2)!}{2}} \cdot \frac{1}{2^{n+2}} \\ &= \frac{3}{(n+2)!} \cdot \frac{2}{3} \prod_{k=0}^{n}\left(\frac{1}{3}-k\right) \cdot \frac{1}{2^{n+2}} \\ &= -\frac{3}{(n+2)!} \cdot \prod_{k=0}^{n+1}\left(\frac{2}{3}-k\right) \cdot \frac{1}{2^{n+2}} \\ &= -3 \cdot \binom{2/3}{n+2} \cdot \frac{1}{2^{n+2}}. \end{align*} $$
Por lo tanto, el valor de la suma es
$$ \begin{align*} -3 \sum_{n=2}^{\infty} \binom{2/3}{n} \cdot \frac{1}{2^n} &= 4-3-3\frac{2}{3}\cdot\frac{1}{2}-3 \sum_{n=2}^{\infty} \binom{2/3}{n} \cdot \frac{1}{2^n} \\ &= 4 - 3 \sum_{n=0}^{\infty} \binom{2/3}{n} \cdot \frac{1}{2^n} \\ &= 4 - 3 \left(1+\frac{1}{2}\right)^{2/3}. \end{align*} $$