${\bf Hint}\ \ {\rm If}\ \ p\ \ {\rm is\ prime,}\ \ n = p^{\large k} m,\,\ p\nmid m\ \ {\rm then}\ \ p^{\large 2j-1}\!\mid n^{\large 2}\!\iff\! \color{#0a0}{p^{\large 2j}\mid n^{\large 2}}\!\iff \color{#c00}{p^{\large j}\mid n},\ $ desde
$$\begin{eqnarray}\,\ p^{\large 2j-1}\!\mid n^{\large 2}\! = p^{\large 2k} m^{\large 2} \!\iff\! 2j\!-\!1\le 2k &\iff& \ \color{#0a0}{2j\le 2k} &\iff& \ \color{#c00}{j\le k}\\ &\overset{\phantom{I^I}}\iff& \color{#0a0}{p^{\large 2j}\mid \smash[b]{\underbrace{p^{\large 2k}m^2}_{\Large n^2}}}\!\! &\iff& \color{#c00}{p^{\large j}\mid \smash[b]{\underbrace{p^{\large k}m}_{\Large n}}} \\ \\ \end{eqnarray}$$
por el Teorema fundamental de la aritmética ( existencia y singularidad de las factorizaciones primarias)
$\!\begin{eqnarray}{\rm Therefore}\ \ \ 2^3\cdot 73\mid n^2 &\iff& 2^3\mid n^2,\,\ 73\mid n^2 \ &&\text{by lcm = product for coprimes}\\ &\iff& \color{#c00}{2^2\mid n,\ \ \ 73\mid n}&&\text{by above Lemma}\\ &\iff& 2^2\cdot 73\mid n &&\text{by lcm = product for coprimes} \end{eqnarray}$