3 votos

Probar una identidad de forma cuadrática

Dejemos que $n$ sea uniforme y $x_1,x_2,,x_n$ sean reales. Demuestre que $$\sum_{1\le i<j\le n}\min(|i-j|,n-|i-j|)x_ix_j\\=\sum_{j=1}^{\frac n2}(x_j+x_{j+1}++x_{j+\frac n2-1})(x_{j+\frac n2}+x_{j+\frac n2+1}++x_{j+n-1}),$$ donde $x_{n+k}=x_k$ para $k=1,2,\cdots,n-1$ .

Esta identidad parece interesante, que viene de uno de mis estudiantes. Creo que es correcta, pero no puedo probarla.

Cuando $n=2$ , $$\text{LHS}=\sum_{1\le i<j\le 2}\min(|2-1|,2-|2-1|)x_{i}x_{j}=x_{1}x_{2},\\\text{RHS}=x_{1}x_{2}.$$ Cuando $n=4$ , $$\text{LHS}=x_{1}x_{2}+2x_{1}x_{3}+x_{1}x_{4}+x_{2}x_{3}+2x_{2}x_{4}+x_{3}x_{4},\\\text{RHS}=\sum_{j=1}^{2}(x_{j}+x_{j+1})(x_{j+2}+x_{j+3})=(x_{1}+x_{2})(x_{3}+x_{4})+(x_{2}+x_{3})(x_{4}+x_{1})=\text{LHS}.$$

3voto

Markus Scheuer Puntos 16133

Hemos establecido $n=2N$ y mostrar para la integral $N\geq 1$

\begin{align*} \sum_{j=1}^N&\left(x_j+\cdots+x_{j+N-1}\right)\left(x_{j+N}+\cdots+x_{j+2N-1}\right)\\ &=\sum_{1\leq i<j\leq 2N}\min(|i-j|,2N-|i-j|)x_ix_j\\ \\ &\text{where } x_{2N+k}=x_k\text{ for }k=1,\ldots,2N-1\tag{1} \end{align*}

Obtenemos \begin{align*} \color{blue}{\sum_{j=1}^N}&\color{blue}{\left(x_j+\cdots+x_{j+N-1}\right)\left(x_{j+N}+\cdots+x_{j+2N-1}\right)}\\ &=\sum_{j=1}^N\left(x_j+\cdots+x_{j+N-1}\right)\\ &\qquad\quad\cdot\left(\left(x_{j+N}+\cdots+x_{2N}\right)+\left(x_{2N+1}+\cdots+x_{j+2N-1}\right)\right)\\ &=\sum_{j=2}^N\left(x_1+\cdots x_{j-1}\right)\left(x_j+\cdots+x_{j+N-1}\right)\\ &\qquad+\sum_{j=1}^N\left(x_j+\cdots+x_{j+N-1}\right)\left(x_{j+N}+\cdots+x_{2N}\right)\tag{2}\\ &=\sum_{j=2}^N\left(x_1+\cdots x_{j-1}\right)\left(x_j+\cdots+x_{j+N-1}\right)\\ &\qquad+\sum_{j=1}^N\left(x_j+\cdots+x_N\right)\left(x_{j+N}+\cdots+x_{2N}\right)\\ &\qquad+\sum_{j=1}^N\left(x_{N+1}+\cdots+x_{j+N-1}\right)\left(x_{j+N}+\cdots+x_{2N}\right)\tag{3}\\ &=\sum_{k=1}^{N-1}x_k\left(\sum_{l={k+1}}^{N+k}x_l+\sum_{l={k+2}}^{N+k+1}x_l+\cdots+\sum_{l=N}^{2N-1}x_l\right)\\ &\qquad+\sum_{k=1}^Nx_k\left(\sum_{l={N+1}}^{2N}x_l+\sum_{l=N+2}^{2N}x_l+\cdots+\sum_{l=N+k}^{2N}x_l\right)\\ &\qquad+\sum_{k={N+1}}^{2N-1}x_k\left(\sum_{l={k+1}}^{2N}x_l+\sum_{l={k+2}}^{2N}x_l+\cdots+\sum_{l={2N}}^{2N}x_l\right)\tag{4}\\ &=\sum_{k=1}^{N-1}x_k\left(\left(\sum_{l={k+1}}^{N+k}x_l+\sum_{l={k+2}}^{N+k}x_l+\cdots+\sum_{l=N}^{N+k}x_l\right)\right.\tag{5}\\ &\qquad\qquad+\left.\left(\sum_{l={N+k+1}}^{N+k+1}x_l+\sum_{l={N+k+1}}^{N+k+2}x_l+\cdots+\sum_{l=N+k+1}^{2N-1}x_l\right)\right)\tag{6}\\ &\qquad+\sum_{k=1}^{N-1}x_k\left(\left(\sum_{l={N+1}}^{N+k}x_l+\sum_{l=N+2}^{N+k}x_l+\cdots+\sum_{l=N+k}^{N+k}x_l\right)\right.\tag{7}\\ &\qquad\qquad+\left.\left(\sum_{l={N+k+1}}^{2N}x_l+\sum_{l=N+k+1}^{2N}x_l+\cdots+\sum_{l=N+k+1}^{2N}x_l\right)\right)\tag{8}\\ &\qquad+x_N\left(\sum_{l=N+1}^{2N}x_l+\sum_{l=N+2}^{2N}x_l+\cdots+\sum_{l=2N}^{2N}x_l\right)\tag{9}\\ &\qquad+\sum_{k=N+1}^{2N-1}x_k\sum_{j=k+1}^{2N}(j-k)x_j\tag{10}\\ &=\sum_{k=1}^{N-1}x_k\sum_{j=k+1}^{N+k}(j-k)x_j\tag{11}\\ &\qquad+\sum_{k=1}^{N-1}x_k\sum_{j=N+k+1}^{2N}(2N-j+1)x_j\tag{12}\\ &\qquad+\sum_{k=1}^{N-1}x_k\sum_{j=N+k+1}^{2N}(k-1)x_j\tag{13}\\ &\qquad+x_N\sum_{j=N+1}^{2N}(j-N)x_j\tag{14}\\ &\qquad+\sum_{k=N+1}^{2N-1}x_k\sum_{j=k+1}^{2N}(j-k)x_j\\ &=\sum_{k=1}^{N}x_k\sum_{j=k+1}^{N+k}(j-k)x_j\tag{15}\\ &\qquad+\sum_{k=1}^{N-1}x_k\sum_{j=N+k+1}^{2N}(2N-j+k)x_j\tag{16}\\ &\qquad+\sum_{k=N+1}^{2N-1}x_k\sum_{j=k+1}^{2N}(j-k)x_j\\ &=\sum_{{1\leq k<j\leq 2N}\atop{j\leq N+k}}(j-k)x_kx_j+\sum_{{1\leq k<j\leq 2N}\atop{N+k<j}}(2N-j+k)x_kx_j\\ &=\sum_{{1\leq k<j\leq 2N}\atop{|k-j|\leq N}}(j-k)x_kx_j+\sum_{{1\leq k<j\leq 2N}\atop{|k-j|>N}}(2N-j+k)x_kx_j\\ &\,\,\color{blue}{=\sum_{1\leq k<j\leq 2N}\min(|k-j|,2N-|k-j|)x_kx_j} \end{align*}

y la afirmación es la siguiente.

Comentario:

  • En (2) utilizamos (1).

  • En (3) dividimos la segunda suma de (2).

  • En (4) reordenamos las tres sumas de (3) utilizando la distributividad de las sumas. Piensa en fijar el $k$ -término del producto de la izquierda y sumar los elementos del producto de la derecha. A continuación, sumamos sobre $k$ .

  • En (5) a (8) dividimos las sumas las dos primeras sumas.

  • En (9) extraemos el término con índice $k=n$ .

  • En (10) recogemos términos iguales de (4).

  • En (11) recogemos términos iguales de (5) y (7).

  • En (12) recogemos términos iguales de (6).

  • En (13) recogemos términos iguales de (8).

  • En (14) recogemos términos iguales de (9).

  • En (15) sumamos (11) y (14).

  • En (16) añadimos (12) y (13).

1voto

Amichai Lampert Puntos 21

Comparemos el coeficiente de $x_ix_j$ en ambos lados. En el LHS es la distancia entre i y j en $Z/(nZ)$ En el lado derecho es el número de formas de dividir $Z/nZ$ en dos intervalos disjuntos de igual longitud, de manera que uno contenga a i y el otro a j. Estos son claramente el mismo número.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X