4 votos

Ecuación diferencial de 2º orden con coeficientes no constantes

Consideremos la ecuación diferencial de segundo orden $$y''-x^2y=0 $$ donde $y$ es una función de $x$ . No sé cómo resolver esta ecuación. Intenté una expansión en serie y fallé, y como los coeficientes no son constantes, tampoco puedo usar la ecuación característica para resolverla. Por lo tanto, aquí estoy, buscando cualquier pista sobre cómo resolver esta ecuación para $y$ .

Sé que ya hay toneladas de preguntas sobre ecuaciones diferenciales de segundo orden como ésta, y he mirado casi todas ellas, sin embargo, todas las soluciones proporcionadas parecen ser muy situadas para la ED dada, y todavía tengo que encontrar un método general que pueda utilizar para resolver lo anterior. He pensado en reducir el orden de la ecuación.

Gracias.

1voto

Claude Leibovici Puntos 54392

Se trata de un caso particular de la ecuación diferencial de Weber $$y''+\left( \nu+\frac 12-\frac {x^2}4\right)y=0$$ Echa un vistazo aquí .

La solución para su caso concreto viene dada por $$y=c_1 D_{-\frac{1}{2}}\left(\sqrt{2} x\right)+c_2 D_{-\frac{1}{2}}\left(i \sqrt{2} x\right)$$ donde aparece la función cilíndrica parabólica.

0voto

Axion004 Puntos 155

Para una solución en serie de potencias, sea $$y=\sum_{n=0}^{\infty}a_nx^n,\quad y'=\sum_{n=1}^{\infty}na_nx^{n-1}, \quad y''=\sum_{n=2}^{\infty}n(n-1)a_{n}x^{n-2}$$

y luego sustituyendo en $y''-x^2y=0$ formularios

$$\sum_{n=2}^{\infty}n(n-1)a_{n}x^{n-2}-x^2\sum_{n=0}^{\infty}a_nx^n=0$$ o $$\sum_{n=2}^{\infty}n(n-1)a_{n}x^{n-2}-\sum_{n=0}^{\infty}a_nx^{n+2}=0$$ por lo que para los coeficientes encontramos $$x^0:\quad 2(1) a_2=0 \implies a_2=0$$ $$x^1:\quad 3(2) a_3=0 \implies a_3=0$$ $$x^2:\quad 4(3) a_4-a_0=0 \implies a_4=\frac{a_0}{12}$$ $$x^3:\quad 5(4) a_5-a_1=0 \implies a_5=\frac{a_1}{20}$$ $$x^4:\quad 6(5) a_6-a_2=0 \implies a_6=\frac{a_2}{30}=0$$ por lo que nuestra recurrencia para $x^n$ viene dada por $$(n+2)(n+1)a_{n+2}-a_{n-2}=0 \implies a_{n+2}=\frac{a_{n-2}}{(n+2)(n+1)},\quad n\ge 2$$ donde \begin{align}y&=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x_5+a_6x^6+\dots\\&= a_0+a_1x+0x^2+0x^3+\frac{a_0}{12}x^4+\frac{a_1}{20}x^5+0x^6+\dots\\&= a_0\left(1+\frac{x^4}{12}+\dots\right)+a_1\left(1+\frac{x^5}{20}+\dots\right) \end{align}

A continuación, se podrían añadir más términos para simplificar la representación de $a_0$ y $a_1$ .

0voto

doraemonpaul Puntos 8603

Nótese que esto pertenece a una EDO de la forma http://eqworld.ipmnet.ru/en/solutions/ode/ode0205.pdf .

Dejemos que $y=e^{-\frac{x^2}{2}}u$ ,

Entonces $y'=e^{-\frac{x^2}{2}}u'-xe^{-\frac{x^2}{2}}u$

$y''=e^{-\frac{x^2}{2}}u''-xe^{-\frac{x^2}{2}}u'-xe^{-\frac{x^2}{2}}u'+(x^2-1)e^{-\frac{x^2}{2}}u=e^{-\frac{x^2}{2}}u''-2xe^{-\frac{x^2}{2}}u'+(x^2-1)e^{-\frac{x^2}{2}}u$

$\therefore e^{-\frac{x^2}{2}}u''-2xe^{-\frac{x^2}{2}}u'+(x^2-1)e^{-\frac{x^2}{2}}u-x^2e^{-\frac{x^2}{2}}u=0$

$e^{-\frac{x^2}{2}}u''-2xe^{-\frac{x^2}{2}}u'-e^{-\frac{x^2}{2}}u=0$

$u''-2xu'-u=0$

Puede aplicar el procedimiento en Ayuda para resolver una ecuación diferencial aparentemente sencilla para conseguir $u=c_1\int_0^\infty\dfrac{e^{-\frac{t^2}{4}+xt}}{\sqrt{t}}dt+c_2\int_0^\infty\dfrac{e^{-\frac{t^2}{4}-xt}}{\sqrt{t}}dt$

$\therefore y=c_1e^{-\frac{x^2}{2}}\int_0^\infty\dfrac{e^{-\frac{t^2}{4}+xt}}{\sqrt{t}}dt+c_2e^{-\frac{x^2}{2}}\int_0^\infty\dfrac{e^{-\frac{t^2}{4}-xt}}{\sqrt{t}}dt$

$y=c_1\int_0^\infty\dfrac{e^{-\frac{t^2}{4}+xt-\frac{x^2}{2}}}{\sqrt{t}}dt+c_2\int_0^\infty\dfrac{e^{-\frac{t^2}{4}-xt-\frac{x^2}{2}}}{\sqrt{t}}dt$

$y=C_1\int_0^\infty e^{-\frac{t^2}{4}+xt-\frac{x^2}{2}}~d(\sqrt{t})+C_2\int_0^\infty e^{-\frac{t^2}{4}-xt-\frac{x^2}{2}}~d(\sqrt{t})$

$y=C_1\int_0^\infty e^{-\frac{t^4}{4}+xt^2-\frac{x^2}{2}}~dt+C_2\int_0^\infty e^{-\frac{t^4}{4}-xt^2-\frac{x^2}{2}}~dt$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X