$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\large\mathbf{\left. a\right)}}$
\begin{align} &\left.\sum_{x_{1} = 0}^{\infty}\sum_{x_{2} = 0}^{\infty} \sum_{x_{3} = 0}^{\infty}\sum_{x_{4} = 1}^{\infty} \sum_{x_{5} = 1}^{\infty}\sum_{x_{6} = 1}^{\infty} \bracks{\sum_{k = 1}^{6}x_{k} = n} \right\vert_{\ x_{1},x_{2},x_{3}\ \mrm{even} \atop x_{4},x_{5},x_{6}\ \mrm{odd}} \\[5mm] = &\ \left.\sum_{x_{1} = 0}^{\infty}\sum_{x_{2} = 0}^{\infty} \sum_{x_{3} = 0}^{\infty}\sum_{x_{4} = 1}^{\infty} \sum_{x_{5} = 1}^{\infty}\sum_{x_{6} = 1}^{\infty} \oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n + 1 - \sum_{k = 1}^{6}x_{k}}}\, {\dd z \over 2\pi\ic} \right\vert_{\ x_{1},x_{2},x_{3}\ \mrm{even} \atop x_{4},x_{5},x_{6}\ \mrm{odd}} \\[5mm] = &\ \oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n + 1}}\, \pars{\sum_{x = 0}^{\infty}z^{2x}}^{3}\pars{\sum_{y = 0}^{\infty}z^{2y + 1}}^{3} {\dd z \over 2\pi\ic} = \oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n + 1}}\, \pars{1 \over 1 - z^{2}}^{3}\pars{z \over 1 - z^{2}}^{3} {\dd z \over 2\pi\ic} \\[5mm] = &\ \oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n - 2}\pars{1 - z^{2}}^{6}}\, {\dd z \over 2\pi\ic} = \sum_{k = 0}^{\infty}{-6 \choose k}\pars{-1}^{k} \oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n - 2k - 2}}\, {\dd z \over 2\pi\ic} \\[5mm] = &\ \sum_{k = 0}^{\infty}{k + 5 \choose 5} \bracks{n - 2k - 2 = 1} =\ \bbox[15px,#ffe,border:1px dotted navy]{\ds{% \left\{\begin{array}{lcl} \ds{0} & \mbox{if} & \ds{n}\ \mbox{is}\ even \\[2mm] \ds{\bracks{n + 7}/2 \choose 5} & \mbox{if} & \ds{n}\ \mbox{is}\ odd \end{array}\right.}} \end{align}
$\ds{\large\mathbf{\left. b\right)}}$ es bastante similar a $\ds{\large\mathbf{\left. a\right)}}$ .
\begin{align} &\oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n + 1}} \pars{\sum_{x = 0}^{12}z^{x}}^{5}\,{\dd z \over 2\pi\ic} = \oint_{\verts{z}\ =\ 1^{-}}{\pars{1 - z^{13}}^{5} \over z^{n + 1}\pars{1 - z}^{5}} \,{\dd z \over 2\pi\ic} \\[5mm] = &\ \oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n + 1}} \sum_{k = 0}^{\infty}{k + 4 \choose 4}x^{k}\sum_{\ell = 0}^{5} {5 \choose \ell}\pars{-1}^{\ell}x^{13\ell}\,{\dd z \over 2\pi\ic} \\[5mm] = &\ \sum_{\ell = 0}^{5}{5 \choose \ell}\pars{-1}^{\ell}\sum_{k = 0}^{\infty} {k + 4 \choose 4}\bracks{k + 13\ell = n} = \sum_{\ell = 0}^{5}{5 \choose \ell}\pars{-1}^{\ell} {n - 13\ell + 4 \choose 4}\bracks{\ell \leq {n \over 13}} \\[5mm] = &\ \color{#f00}{% \sum_{\ell = 0}^{\left\lfloor n/13\right\rfloor}\pars{-1}^{\ell}{5 \choose \ell}{n - 13\ell + 4 \choose 4}} \\[5mm] = &\ \left\{\begin{array}{ll} \ds{n + 4 \choose 4} & \mbox{if} & \ds{0 \leq n \leq 12} \\[3mm] \ds{{n + 4 \choose 4} - 5{n - 9 \choose 4}} & \mbox{if} & \ds{13 \leq n \leq 25} \\[3mm] \ds{{n + 4 \choose 4} - 5{n - 9 \choose 4} + 10{n - 22 \choose 4}} & \mbox{if} & \ds{26 \leq n \leq 38} \\[3mm] \ds{{n + 4 \choose 4} - 5{n - 9 \choose 4} + 10{n - 22 \choose 4} - 10{n - 35 \choose 4}} & \mbox{if} & \ds{39 \leq n \leq 51} \\[3mm] \ds{{n + 4 \choose 4} - 5{n - 9 \choose 4} + 10{n - 22 \choose 4} - 10{n - 35 \choose 4} + 5{n - 48 \choose 4}} & \mbox{if} & \ds{52 \leq n \leq 60} \\[3mm] \ds{0} & \mbox{if} & \ds{n > 60} \end{array} \derecha. \Fin