3 votos

¿Podría un predictor con una correlación nula con una respuesta ser significativo en una regresión múltiple?

Supongamos que tenemos una regresión múltiple con $n$ predictores. Todos ellos tienen correlaciones significativas con la respuesta excepto uno. ¿Podría ser significativo el predictor con la correlación cero con la respuesta?

7voto

Sean Hanley Puntos 2428

La situación prototípica en la que una variable tiene una correlación marginal nula con la respuesta, pero una asociación significativamente distinta de cero condicionada a la inclusión de las demás covariables se denomina supresión. Hay varios hilos sobre este tema en CV:

También es posible que la variable no sea un supresor, sino que sea relevante y simplemente sea "anulada" por otra variable con el efecto contrario con la que está correlacionada. Aquí hay algunas cosas que hay que leer para ayudar a entender eso:

3voto

Erin Drummond Puntos 154

Sí, puede suceder e incluso pueden darse escenarios más extremos.

Piensa que tienes 2 características, el inicio de un periodo $s$ y su fin $e$ . Supongamos que el concepto es la longitud del período $l = (e-s)$ y construiremos el conjunto de datos para que ambos $s$ y $e$ son independientes de $l$ .

La correlación considera sólo una característica y el concepto y será $0$ (por construcción). Sin embargo, teniendo en cuenta el inicio y el final del periodo, tienes toda la información sobre su duración.

Volviendo a tu pregunta, puedes construir un escenario en el que el predictor de correlación cero y uno de los otros sumadores de predicción sea el concepto. La regresión múltiple es muy adecuada para estos problemas, por lo que puedes obtener una predicción perfecta. Eso será aún más fácil si eliminas el resto de los predictores.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X