Cualquier ayuda se agradece, gracias.
Respuestas
¿Demasiados anuncios?A a)a)
Tenga en cuenta que (t,−tsin(π/3),√2t)+(s,−ssin(π/3),√2s)=(t+s,−(t+s)sin(π/3),√2(t+s))∈W(t,−tsin(π/3),√2t)+(s,−ssin(π/3),√2s)=(t+s,−(t+s)sin(π/3),√2(t+s))∈W y α(t,−tsin(π/3),√2)=(αt,−αtsin(π/3),√2αt)∈W.α(t,−tsin(π/3),√2)=(αt,−αtsin(π/3),√2αt)∈W. Así, WW es un subespacio lineal.
A b)b)
Tenga en cuenta que →u=(1,0,0),→v=(0,1,1)∈W.→u=(1,0,0),→v=(0,1,1)∈W. Sin embargo, →u+→v=(1,1,1)∉W.→u+→v=(1,1,1)∉W. Por lo tanto, no es un subespacio lineal.
A c)c)
Si f,g∈Vf,g∈V es (f+g)(2)=(f+g)(−2)?(f+g)(2)=(f+g)(−2)? Es (αf)(2)=(αf)(−2)?(αf)(2)=(αf)(−2)?