$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\lim_{n \to \infty}\bracks{\sum_{k = 1}^{n}{1 \over k} - \ln\pars{n}}=
-\int_{0}^{\infty}\expo{-t}\ln\pars{t}\,\dd t:\ {\large ?}}$
\begin{align}
\sum_{k = 1}^{n}{1 \over k}&=\sum_{k = 1}^{n}\int_{0}^{1}t^{k - 1}\,\dd t
\int_{0}^{1}\sum_{k = 1}^{n}t^{k - 1}\,\dd t
=\int_{0}^{1}{1 - t^{n - 1} \over 1 - t}\,\dd t
=\int_{\infty}^{1}{1 - t^{1 - n} \over 1 - 1/t}\,\pars{-\,{\dd t \over t^{2}}}
\\[3mm]&=\int_{1}^{\infty}{t^{-1} - t^{-n} \over t - 1}\,\dd t
=\int_{0}^{\infty}{\pars{1 + t}^{-1} - \pars{1 + t}^{-n} \over t}\,\dd t
\\[3mm]&=-\int_{0}^{\infty}\ln\pars{t}
\bracks{-\pars{1 + t}^{-2} + n\pars{1 + t}^{-n - 1}}\,\dd t
\\[3mm]&=\int_{0}^{\infty}{\ln\pars{t} \over \pars{1 + t^{2}}}\,\dd t
-\int_{0}^{\infty}\ln\pars{t \over n}\pars{1 + {t \over n}}^{-n - 1}\,\dd t
\end{align}
La primera integral se desvanece: Solo split $\ds{\pars{0,\infty}}$ $\ds{\pars{0,1}}$ $\ds{\pars{1,\infty}}$ y vamos a ver que las 'piezas' cancela el uno al otro:
\begin{align}
\sum_{k = 1}^{n}{1 \over k} - \ln\pars{n}&
=\overbrace{\ln\pars{n}\bracks{\int_{0}^{\infty}\pars{1 + {t \over n}}^{-n - 1}\,\dd t - 1}}^{\ds{\stackrel{\to\ 0}{\mbox{when}\ n \to \infty}}}\
-\
\int_{0}^{\infty}\ln\pars{t}\pars{1 + {t \over n}}^{-n - 1}\,\dd t
\end{align}
Tenga en cuenta que $\ds{\lim_{n \to \infty}\pars{1 + {t \over n}}^{-n - 1} = \expo{-t}}$
y $\ds{\int_{0}^{\infty}\expo{-t}\,\dd t = 1}$:
$$\color{#66f}{\large%
\lim_{n \to \infty}\bracks{\sum_{k = 1}^{n}{1 \over k} - \ln\pars{n}}=
-\int_{0}^{\infty}\expo{-t}\ln\pars{t}\,\dd t}
$$