Podemos escribir $$\displaystyle S = 1-\frac{1}{7}+\frac{1}{13}-........\infty = \int_{0}^{1}\left(x^{0}-x^{6}+x^{12}-........\infty\right)dx$$
Por lo $$\displaystyle S = \int_{0}^{1}\frac{1}{1+x^6}dx = \frac{1}{2}\int_{0}^{1}\frac{\left(1+x^4\right)+\left(1-x^4\right)}{1+x^6}dx$$
$$\displaystyle S = \frac{1}{2}\int_{0}^{1}\frac{1+x^4}{1+x^6}dx+\frac{1}{2}\int_{0}^{1}\frac{1-x^4}{1+x^6}dx$$
Ahora vamos a tomar $$\displaystyle I = \frac{1}{2}\int_{0}^{1}\frac{1+x^4}{1+x^6}dx$$ and $$\displaystyle J = \frac{1}{2}\int_{0}^{1}\frac{1-x^4}{1+x^6}dx$$
Así que primero vamos a calcular el valor de $I$
Por lo $$\displaystyle I = \frac{1}{2}\int_{0}^{1}\frac{1+x^4}{1+x^6}dx = \frac{1}{2}\int_{0}^{1}\frac{(x^2+1)^2-2x^2}{1+x^6}dx$$
Por lo $$\displaystyle I = \frac{1}{2}\int_{0}^{1}\frac{(x^2+1)^2}{(1+x^2)\cdot (x^4-x^2+1)}dx - \int_{0}^{1}\frac{x^2}{1+(x^3)^2}dx$$
Por lo $$\displaystyle I = \frac{1}{2}\int_{0}^{1}\frac{x^2+1}{x^4-x^2+1}-\int\frac{x^2}{1+(x^3)^2}dx$$
Por lo $$\displaystyle I = \frac{1}{2}\int_{0}^{1} \frac{\left(1+\frac{1}{x^2}\right)}{\left(x-\frac{1}{x}\right)^2+1^2}- \int_{0}^{1}\frac{x^2}{1+(x^3)^2}dx$$
Ahora Vamos a $$\displaystyle \left(x-\frac{1}{x}\right) = t \Leftrightarrow \left(1+\frac{1}{x^2}\right)dx = dt$$ and $x^3 = u\Leftrightarrow 3x^2dx = du\displaystyle \Leftrightarrow dx = \frac{1}{3}du$
Por lo $$\displaystyle I = \frac{1}{2}\cdot \left[\tan^{-1}\left(x-\frac{1}{x}\right)\right]_{0}^{1} - \frac{1}{3}\cdot \left[\tan^{-1}\left(x^3\right)\right]_{0}^{1} = \frac{\pi}{4}-\frac{\pi}{12} = \frac{\pi}{6}$$
Del mismo modo vamos a calcular el $$\displaystyle J = \frac{1}{2}\int_{0}^{1}\frac{1-x^4}{1+x^6}dx$$
Por lo $$\displaystyle J = \frac{1}{2}\int_{0}^{1}\frac{(1-x^2)\cdot (1+x^2)}{(1+x^2)\cdot (x^4-x^2+1)}dx = -\frac{1}{2}\int_{0}^{1}\frac{x^2-1}{x^4-x^2+1}dx$$
$$\displaystyle J = -\frac{1}{2}\int_{0}^{1} \frac{\left(1-\frac{1}{x^2}\right)}{\left(x+\frac{1}{x}\right)^2+\left(\sqrt{3}\right)^2}dx$$
Ahora Vamos A $$\displaystyle \left(x+\frac{1}{x}\right) = v \Leftrightarrow \left(1-\frac{1}{x^2}\right)dx = dv$$
Por lo $$\displaystyle J = -\frac{1}{2}\cdot \frac{1}{2\sqrt 3}\cdot \left[\ln \left|\frac{\left(x+\frac{1}{x}\right)-\sqrt{3}}{\left(x+\frac{1}{x}\right)+\sqrt{3}}\right|\right]_{0}^{1} $$
$$\displaystyle J = -\frac{1}{2}\cdot \frac{1}{2\sqrt 3}\cdot \ln\left|\frac{x^2+1-\sqrt{3x}}{x^2+1+\sqrt{3}x}\right|_{0}^{1} = -\frac{2}{2}\cdot \frac{1}{2\sqrt 3}\cdot \ln(2-\sqrt{3}) = \frac{1}{2\sqrt{3}}\ln(2+\sqrt{3})$$
Por lo $$\displaystyle \int_{0}^{1}\frac{1}{1+x^6}dx = \frac{\pi}{6}+\frac{1}{2\sqrt{3}}\ln(2+\sqrt{3}) = \color{red}{\frac{\pi+\sqrt{3}\ln(2+\sqrt{3})}{6}}$$