Siempre uso lm()
en R para realizar una regresión lineal de$y$ en$x$. Esa función devuelve un coeficiente$\beta$ tal que$$y = \beta x.$$
Today I learned about total least squares and that princomp()
function (principal component analysis, PCA) can be used to perform it. It should be good for me (more accurate). I have done some tests using princomp()
, like:
r <- princomp( ~ x + y)
My problem is: how to interpret its results? How can I get the regression coefficient? By "coefficient" I mean the number $ \ beta$ that I have to use to multiply the $ x$ value to give a number close to $ y $.