Un problema que resolví anteriormente Me sale
$$\frac{\sin(n\theta)}{\sin(\theta)} = 2^{n-1}\prod_{k=1}^{n-1}\bigg(\cos(\theta)-\cos{\bigg(\frac{k\pi}{n}}\bigg)\bigg)$$
Así que teniendo en cuenta $z^{4n+2} = 1$ lleva a
$$\frac{\sin((2n+1)\theta)}{\sin(\theta)} = 2^{2n}\prod_{k=1}^{2n}\bigg(\cos(\theta)-\cos\bigg(\frac{k\pi}{2n+1}\bigg)\bigg)......................(1)$$
Ahora
$$\cos\bigg(\frac{2n\pi}{2n+1}\bigg) = \cos\bigg(\pi-\frac{\pi}{2n+1}\bigg) =-\cos\bigg(\frac{\pi}{2n+1}\bigg)$$
$$\cos\bigg(\frac{(2n-1)\pi}{2n+1}\bigg) = \cos\bigg(\pi-\frac{2\pi}{2n+1}\bigg) =-\cos\bigg(\frac{2\pi}{2n+1}\bigg)$$
$$...........................................................$$
$$\cos\bigg(\frac{(n+1)\pi}{2n+1}\bigg) = \cos\bigg(\pi-\frac{n\pi}{2n+1}\bigg) =-\cos\bigg(\frac{n\pi}{2n+1}\bigg)$$
términos multiplicadores $k = 1$ con $k = 2n, k =2$ con $k = 2n-1\dots k = n$ con $k = n+1$ términos, desde $......(1)$ Me sale
$$\frac{\sin((2n+1)\theta)}{\sin(\theta)} = 2^{2n}\cdot\bigg(\cos(\theta)+\cos\bigg(\frac{\pi}{2n+1}\bigg)\bigg)\cdot \bigg(\cos(\theta)-\cos\bigg(\frac{\pi}{2n+1}\bigg)\bigg)\hspace{82pt}\cdot\bigg(\cos(\theta)+\cos\bigg(\frac{2\pi}{2n+1}\bigg)\bigg)\cdot\bigg(\cos(\theta)-\cos\bigg(\frac{2\pi}{2n+1}\bigg)\bigg)........\hspace{56pt}\bigg(\cos(\theta)+\cos\bigg(\frac{n\pi}{2n+1}\bigg)\bigg)\cdot\bigg(\cos(\theta)-\cos\bigg(\frac{n\pi}{2n+1}\bigg)\bigg)$$
$$ \hspace{35pt}= 2^{2n}\prod_{k = 1}^{n} \bigg(\cos^{2}(\theta)-\cos^{2}\bigg(\frac{k\pi}{2n+1}\bigg)\bigg).............(2)$$
¿Cómo puedo demostrar $$\frac{\sin((2n+1)\theta)}{\sin(\theta)} = (2n+1)\prod_{k = 1}^{n}\bigg(1-\frac{\sin^2(\theta)}{\sin^2\big(\frac{k\pi}{2n+1}\big)}\bigg)$$ de mi cálculo? ¿Está bien mi forma de enfocar este problema o no? Si no lo es, dame una o varias pistas.