¿Tiene la secuencia infinita una forma cerrada posible? El signo menos no es un error, está en el lugar correcto.
$$\sqrt{5+\sqrt{5+\sqrt{5-\sqrt{5+\sqrt{5+\cdots}}}}}$$
La secuencia de signos tiene periodo $4$ $(+,+,-,+)$
¿Tiene la secuencia infinita una forma cerrada posible? El signo menos no es un error, está en el lugar correcto.
$$\sqrt{5+\sqrt{5+\sqrt{5-\sqrt{5+\sqrt{5+\cdots}}}}}$$
La secuencia de signos tiene periodo $4$ $(+,+,-,+)$
Tal y como sugiere @DanielFisher deberías dibujar la función $$ f(x) = \sqrt{5+\sqrt{5+\sqrt{5-\sqrt{5+x}}}} $$ y comparar con la función $x$ , como aquí . Es evidente que la secuencia converge y la solución es aproximadamente 2,74
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.