Necesito ayuda para entender el diseño de las pruebas, me encuentro perdido después de horas de intentar trabajarlo, tanto si sé cómo hay que trabajar el problema como si no. Estoy cursando probabilidad y transición a matemáticas avanzadas. ¡Estoy luchando en ambas clases y estoy nerviosa por lo peor!
Respuestas
¿Demasiados anuncios?Así que, técnicamente, no haces una pregunta, pero insinúas una pregunta que intentaré responder.
Lo mejor que podría recomendarte sería un gran inconveniente, y así es. Hay muchos libros sobre pruebas (por ejemplo, "how to prove it" de Velleman, y deberías empezar por leerlos además de tu trabajo de clase. Luego, intenta demostrar todo, aunque no esté asignado. Practica y le cogerás el tranquillo.
En segundo lugar, si tienes problemas para escribir tus pruebas "en matemáticas", empieza por escribirlas en inglés. Es más fácil escribir tus pensamientos completamente y traducirlos, especialmente mientras aprendes, que tratar de ponerlos en matemáticas de la manera correcta primero.
Pero, en serio, practica. Estas cosas no se hacen más fáciles por ignorarlas. Sí, es mucho trabajo. Sí, es difícil. Pero, dará sus frutos a largo plazo.
Hay mucho más que decir sobre la "disposición de las pruebas" de lo que se puede decir aquí. Sin embargo, además de los buenos puntos de @atomic...
No piense en la "prueba" como algo diferente al lenguaje ordinario, al ordinario persuasión ...el pensamiento lógico ordinario. Sin embargo, como se puede ver fácilmente en la prensa popular, mucho de lo que pasa por "persuasión" es en realidad sólo intimidación o tácticas de miedo o "buenos gráficos" o tocar los reflejos condicionados o las tradiciones culturales. La idea en matemáticas es que uno debe "elevarse por encima" de cualquiera de esos contextos demasiado condicionados... En los últimos 150+ años también se ha observado que la "intuición física", aunque obviamente nos guía, no es una "prueba".
Sin embargo, el espíritu de la "prueba" es que uno simplemente explica lo que "observa" en algún mundo cuasi-platónico muy real. Hay no "sagradas" para formar una prueba. Las apelaciones a la dudosa "intuición" no son legales, aunque, a otro nivel, las apelaciones al "conocimiento común entre expertos" (una "intuición" mejorada) son de hecho rutinarias.
Un aspecto triste de la "demostración" en las matemáticas "elementales" es que con demasiada frecuencia se hace hincapié en demostrar cosas abstractas artificiales en "el contexto nulo". ¡¡¡Así que no hay que sorprenderse si uno no tiene tracción!!! Es decir, cuando el "juego de la prueba" se convierte en un juego de manipulación de símbolos casi sin contenido, ¡¡¡no es de extrañar que no se consiga tracción!!!
Una vez más, sin embargo, hay algunos beneficios de poder jugar al juego de los símbolos, al igual que hay beneficios de poder manipular los números hindúes-árabes. (Bueno, en todo caso, alguna vez lo hubo.) Pero esto no es lo mismo que una comprensión más intuitiva de las cosas reales.
Después de la cuestión tan poco trivial de la "escritura clara", que es de hecho el verdadero obstáculo para muchos, la siguiente cuestión es "sentir y expresar la intuición casi física". Estas dos cuestiones son muy diferentes entre sí y, a menudo, creo que la gente tiene problemas porque entremezcla las dos...
Pero, volviendo a otro punto: en cualquier caso, practica . La familiaridad. No hay magia.