Demostramos por inducción la siguiente afirmación:
$$\text{For } x\geq 0,\qquad p_x(t) = \dfrac{(\lambda t)^x e^{-\lambda t}}{x!} \qquad\qquad\qquad\qquad\text{(1)}$$
Para el caso inicial, $x=0$ tenemos:
\begin{eqnarray*} p_0^{'}(t) &=& -\lambda p_0(t) \\ \therefore\quad \dfrac{p_0^{'}(t)}{p_0(t)} &=& -\lambda \\ \text{Integrating,}\qquad \ln{p_0(t)} &=& -\lambda t + c_1 \\ p_0(t) &=& c_2 e^{-\lambda t} \\ p_0(0) = 1 & \implies& c_2 = 1 \\ \therefore\quad p_0(t) &=& e^{-\lambda t}\qquad\qquad\qquad\text{completing the initial case.} \end{eqnarray*}
Supongamos ahora que $(1)$ se mantiene para algunos $x \geq 0$ y considerar el caso de $x+1$ . Tenemos
\begin{eqnarray*} p_{x+1}^{'}(t) &=& -\lambda p_{x+1}(t) + \lambda p_{x}(t) \\ \lambda e^{\lambda t}p_{x+1}(t) + e^{\lambda t}p_{x+1}^{'}(t) &=& \lambda e^{\lambda t}p_{x}(t) \qquad\qquad\qquad\text{(multiply by $e^{\lambda t}$ and re-arrange)} \\ \dfrac{d}{dt}\bigg[e^{\lambda t}p_{x+1}(t)\bigg] &=& \lambda e^{\lambda t}p_{x}(t) \\ &=& \lambda e^{\lambda t} \dfrac{(\lambda t)^x e^{-\lambda t}}{x!} \qquad\qquad\qquad\text{(by inductive assumption)} \\ &=& \dfrac{\lambda (\lambda t)^x} {x!} \\ \text{Integrating,}\qquad e^{\lambda t}p_{x+1}(t) &=& \dfrac{(\lambda t)^{x+1}} {(x+1)!} + c_1 \\ p_{x+1}(0) = 0 & \implies& c_1 = 0 \\ \therefore\quad p_{x+1}(t) &=& \dfrac{(\lambda t)^{x+1}e^{-\lambda t}} {(x+1)!} \qquad\qquad\qquad\text{completing the proof.} \\ \end{eqnarray*}