Suponiendo que $m=p_1^{\alpha_1}...p_r^{\alpha_r}$ . Demostrar que $$a\equiv b\pmod m\Longleftrightarrow a\equiv b\pmod {p_i^{\alpha_i}},\;i={1,...,r}$$
Siempre me han parecido muy bonitas las afirmaciones que contienen números de esta manera $$x=p_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3}p_4^{\alpha_4}...p_w^{\alpha_w}$$ y estar aquí estudiando congruencias, se encontró con come esta cuestión, que por desgracia ni siquiera saben por dónde empezar o qué hacer ... Mientras que las declaraciones como estas, no puedo entender muy fácilmente por lo que le pido que hacer POR FAVOR, DETALLA ...
Le agradezco