Usted está buscando $$ \eqalign{ & N(s,m) = {\rm No}{\rm .}\,{\rm of}\,{\rm solutions}\,{\rm to}\;\left\{ \matrix{ {\rm 1} \le {\rm integer}\;x_{\,j} \le 6 \hfill \cr x_{\,1} + x_{\,2} + \; \cdots \; + x_{\,m} = s \hfill \cr} \right. = \cr & = {\rm No}{\rm .}\,{\rm of}\,{\rm solutions}\,{\rm to}\;\left\{ \matrix{ {\rm 0} \le {\rm integer}\;y_{\,j} \le 5 \hfill \cr y_{\,1} + y_{\,2} + \; \cdots \; + y_{\,m} = s - m \hfill \cr} \right. = \cr & = N_b (s - m,5,m) \cr} $$ donde $$ N_b (s,r,m) = {\rm No}{\rm .}\,{\rm of}\,{\rm solutions}\,{\rm to}\;\left\{ \matrix{ {\rm 0} \le {\rm integer}\;x_{\,j} \le r \hfill \cr x_{\,1} + x_{\,2} + \; \cdots \; + x_{\,m} = s \hfill \cr} \right. $$ y viene dada por $$ N_b (s,r,m)\quad \left| {\;0 \leqslant \text{integers }s,m,r} \right.\quad = \sum\limits_{\left( {0\, \leqslant } \right)\,\,k\,\,\left( { \leqslant \,\frac{s}{r+1}\, \leqslant \,m} \right)} {\left( { - 1} \right)^k \binom{m}{k} \binom { s + m - 1 - k\left( {r + 1} \right) } { s - k\left( {r + 1} \right)}\ } $$ como se describe minuciosamente en este post relacionado .
Obsérvese que el número acumulado de soluciones para $s$ hasta $S$ viene dada por $$ \eqalign{ & M_b (S,r,m) = {\rm No}{\rm .}\,{\rm of}\,{\rm solutions}\,{\rm to}\;\left\{ \matrix{ {\rm 0} \le {\rm integer}\;x_{\,j} \le r \hfill \cr x_{\,1} + x_{\,2} + \; \cdots \; + x_{\,m} \le S \hfill \cr} \right. = \cr & = \sum\limits_{\left( {0\, \le } \right)\,\,s\,\, \le \,S\,} {N_b (s,r,m)} \quad = \sum\limits_{\left( {0\, \le } \right)\,\,k\,\,\left( { \le \,{s \over {r + 1}}\, \le \,m} \right)} {\left( { - 1} \right)^k \left( \matrix{ m \hfill \cr k \hfill \cr} \right)\left( \matrix{ S + m - k\left( {r + 1} \right) \cr S - k\left( {r + 1} \right) \cr} \right)} \cr} $$ que responde a sus preguntas sobre la obtención de "no menos de ..." o "entre $S_1$ y $S_2$ ".
Tenemos que $$ \left( {r + 1} \right)^{\,m} = \sum\limits_{\left( {0\, \le } \right)\,\,s\,\,\left( { \le \,r\,m} \right)\,} {N_b (s,r,m)} $$ y por lo tanto $$ P_b (s,r,m) = {{N_b (s,r,m)} \over {\left( {r + 1} \right)^{\,m} }} $$ es la distribución de probabilidad de la suma $s$ de $m$ i.i.d. discreto variables, con apoyo $[0,r]$ .
Para grandes valores de lanzamientos ( $m$ ), la probabilidad tiende a la distribución de probabilidad de la suma de $m$ continuo variables aleatorias distribuidas uniformemente en $[-1/2,r+1/2]$ que es conocido como Distribución de Irwin Hall y que a su vez se convierte en asintótica de una distribución normal con media y varianza iguales a $m$ veces la media y la varianza de la variable aleatoria uniforme en $[-1/2,r+1/2]$ es decir $$ \eqalign{ & P_{\,b} (s,r,m) = {{N_{\,b} (s,r,m)} \over {\left( {r + 1} \right)^{\,m} }} \approx \cr & \approx {1 \over {\sqrt {2\pi m\sigma ^{\,2} } }}e^{\, - \,{{\left( {s - m\mu } \right)^{\,2} } \over {2m\sigma ^{\,2} }}} = {{\sqrt {6/\pi } } \over {\sqrt {m\left( {\left( {r + 1} \right)^{\,2} } \right)} }}e^{\, - \,6{{\left( {s - mr/2} \right)^{\,2} } \over {m\left( {\left( {r + 1} \right)^{\,2} } \right)}}} \cr} $$