Denotar que el evaluado integral como $I$, $I$ puede escribirse como
$$I=\frac{1}{2}\int_0^\infty \frac{\ln \sin^2 x}{1+x^2}\,dx-\frac{1}{2}\int_0^\infty \frac{\ln \cos^2 x}{1+x^2}\,dx$$
El uso de la transformada de Fourier de la serie de representaciones de $\ln \sin^2 \theta$$\ln \cos^2 \theta$,
$$\ln \sin^2 \theta=-2\ln2-2\sum_{k=1}^\infty \frac{\cos2k\theta}{k}$$
y
$$\ln \cos^2 \theta=-2\ln2+2\sum_{k=1}^\infty (-1)^{k+1}\frac{\cos2k\theta}{k}$$
también tenga en cuenta que
$$\int_0^\infty\frac{\cos ax}{1+x^2}\,dx=\frac{\pi e^{-a}}{2}$$
entonces
$$\begin{align}I&=-\sum_{k=1}^\infty \frac{1}{k}\int_0^\infty\frac{\cos2kx}{1+x^2}\,dx-\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k}\int_0^\infty\frac{\cos2kx}{1+x^2}\,dx\\&=-\pi\sum_{k=1}^\infty \frac{e^{-2k}}{2k}-\pi\sum_{k=1}^\infty (-1)^{k+1}\frac{e^{-2k}}{2k}\\&=\frac{\pi}{2}\ln\left(1-e^{-2}\right)-\frac{\pi}{2}\ln\left(1+e^{-2}\right)\\&=\frac{\pi}{2}\ln\left(\frac{1-e^{-2}}{1+e^{-2}}\right)\\&=\frac{\pi}{2}\ln\left(\tanh 1\right)\end{align}$$