$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{\mathrm{i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,\mathrm{Li}_{#1}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\color{#f00}{\int_{0}^{1}\int_{0}^{1}{x^{\alpha - 1}\,\,y^{\beta - 1} \over \pars{1 + xy}\ln\pars{xy}}\,\dd x\,\dd y} = -\int_{0}^{1}\int_{0}^{1}{x^{\alpha - 1}\,\,y^{\beta - 1} \over 1 + xy}\,\,\, \overbrace{\int_{0}^{\infty}\pars{xy}^{z}\,\dd z} ^{\ds{-\,{1 \over \ln\pars{xy}}}}\ \,\dd x\,\dd y \\[5mm] = &\ -\int_{0}^{\infty}\int_{0}^{1}\int_{0}^{1} {x^{\alpha -1 + z}\,\,\,y^{\beta - 1 + z} \over 1 + xy} \,\dd x\,\dd y\,\dd z = -\int_{0}^{\infty}\int_{0}^{1}\int_{0}^{1} {\pars{xy}^{\alpha -1 + z}\,\,\,y^{\beta - \alpha - 1} \over 1 + xy} \,\dd\pars{xy}\,\dd y\,\dd z \\[5mm] = &\ -\int_{0}^{\infty}\int_{0}^{1}\int_{0}^{y} {x^{\alpha -1 + z}\,\,\,y^{\beta - \alpha - 1} \over 1 + x} \,\dd x\,\dd y\,\dd z = -\int_{0}^{\infty}\int_{0}^{1}{x^{\alpha -1 + z}\,\,\, \over 1 + x}\int_{x}^{1} y^{\beta - \alpha - 1}\,\,\,\dd y\,\dd x\,\dd z \\[5mm] = &\ {1 \over \beta - \alpha}\int_{0}^{\infty}\int_{0}^{1} {x^{\beta + z - 1}\,\,\, -\,\,\, x^{\alpha + z - 1}\,\,\, \over 1 + x} \,\dd x\,\dd z \\[5mm] = &\ {1 \over \beta - \alpha}\int_{0}^{\infty}\int_{0}^{1} {x^{\beta + z - 1}\,\,\, -\,\,\, x^{\alpha + z - 1}\,\,\, -\,\,\, x^{\beta + z}\,\,\, +\,\,\, x^{\alpha + z} \over 1 - x^{2}} \,\dd x\,\dd z \\[5mm] \stackrel{x^{2}\ \mapsto\ x}{=}\ &\ {1 \over 2\pars{\beta - \alpha}} \int_{0}^{\infty}\int_{0}^{1} {x^{\beta/2 + z/2 - 1}\,\,\, -\,\,\, x^{\alpha/2 + z/2 - 1}\,\,\, -\,\,\, x^{\beta/2 + z/2 - 1/2}\,\,\, +\,\,\, x^{\alpha/2 + z/2 - 1/2} \over 1 - x} \,\,\,\,\dd x\,\dd z \end{align}
Con la Función Digamma identidad $\pars{~\gamma\ \mbox{is the Euler-Mascheroni Constant}~}$ $$\left.\Psi\pars{\xi} = -\gamma + \int_{0}^{1}{1 - t^{\xi - 1} \over 1 - t}\,\dd t\, \right\vert_{\ \Re\pars{\xi}\ >\ 0\,\,\,\,\,} $$ la integración se reduce a: \begin{align} &\color{#f00}{\int_{0}^{1}\int_{0}^{1}{x^{\alpha - 1}\,\,y^{\beta - 1} \over \pars{1 + xy}\ln\pars{xy}}\,\dd x\,\dd y} \\[5mm] = &\ {1 \over 2\pars{\beta - \alpha}}\int_{0}^{\infty}\bracks{% \Psi\pars{z + \alpha \over 2} + \Psi\pars{z + \beta + 1 \over 2} - \Psi\pars{z + \beta \over 2} - \Psi\pars{z + \alpha + 1 \over 2}}\,\dd z \end{align}
Desde $\ds{\Psi\pars{\xi}\ \stackrel{\mrm{def.}}{=}\ \totald{\ln\pars{\Gamma\pars{\xi}}}{\xi}}$ \begin{align} &\color{#f00}{\int_{0}^{1}\int_{0}^{1}{x^{\alpha - 1}\,\,y^{\beta - 1} \over \pars{1 + xy}\ln\pars{xy}}\,\dd x\,\dd y} = \left.{1 \over \beta - \alpha} \ln\pars{\Gamma\pars{z/2 + \alpha/2}\Gamma\pars{z/2 + \beta/2 + 1/2} \over \Gamma\pars{z/2 + \beta/2}\Gamma\pars{z/2 + \alpha/2 + 1/2}} \right\vert_{\ 0}^{\ \infty} \\[5mm] = &\ \color{#f00}{{1 \over \beta - \alpha}\, \ln\pars{\Gamma\pars{\bracks{\alpha + 1}/2}\Gamma\pars{\beta/2} \over \Gamma\pars{\alpha/2}\Gamma\pars{\bracks{\beta + 1}/2}}}\,;\qquad \Re\pars{\alpha} > 0\,,\quad\Re\pars{\beta} > 0 \end{align}
Cuando $\ds{\ul{\beta \to \alpha}}$ la solución se convierte en: $$ \half\bracks{\Psi\pars{\alpha \over 2} - \Psi\pars{\alpha + 1 \over 2}} $$