Pregunta: Prueba $$ \frac{\sin^3(x)-\cos^3(x)}{\sin(x)+\cos(x)} = \frac{\csc^2(x) -\cot(x) -2\cos^2(x)}{1-\cot^2(x)} $$
RHS: $$ \frac{\csc^2(x) -\cot(x) -2\cos^2(x)}{1-\cot^2(x)} $$
$$ \frac{\frac{1}{\sin^2(x)} +\frac{\cos(x)}{\sin(x)}-2\cos^2(x)}{1-\frac{\cos^2(x)}{\sin^2(x)}} $$
$$ \frac{\frac{1}{\sin^2(x)} +\frac{\cos(x)\sin(x)}{\sin^2(x)}-\frac{2\cos^2(x)\sin^2(x)}{\sin^2(x)}}{\frac{\sin^2(x)-\cos^2(x)}{\sin^2(x)}} $$
$$ \frac{\frac{1+\cos(x)\sin(x)-2\cos^2(x)\sin^2(x)}{\sin^2(x)}}{\frac{\sin^2(x)-\cos^2(x)}{\sin^2(x)}} $$
$$ \frac{1+\cos(x)\sin(x)-2\cos^2(x)\sin^2(x)}{\sin^2(x)} \times {\frac{\sin^2(x)}{\sin^2(x)-\cos^2(x)}} $$
$$ \frac{1+\cos(x)\sin(x)-2\cos^2(x)\sin^2(x)}{\sin^2(x)-\cos^2(x)} $$
$$ \frac{1+\cos(x)\sin(x)-2\cos^2(x)\sin^2(x)}{(\sin(x)-\cos(x))(\sin(x)+\cos(x))} $$
Ahora estoy atascado