Dejemos que $T_n=\sum _{k=1}^{n}\dfrac{e^{k-1}}{\pi ^{k+1}}$ calcular el $\lim_{n\to\infty}T_n$
Nota $T_n$ es una serie geométrica:
\begin{align*} T_n&=\sum _{k=1}^{n \:}\dfrac{e^{k-1}}{\pi ^{k+1}}\\ &= \pi^{-2}.\sum _{k=1}^{n \:}\dfrac{e^{k-1}}{\pi ^{k-1}}\\ &= \pi^{-2}.\sum _{k=1}^{n \:}\left(\dfrac{e}{\pi }\right)^{k-1}\\ &= \pi^{-2}.\sum _{k=0}^{n-1 \:}\left(\dfrac{e}{\pi }\right)^{k}(\text{change of index})\\ &= \pi^{-2}.\dfrac{1-\left(\dfrac{e}{\pi }\right)^{n}}{1-\left(\dfrac{e}{\pi }\right)}(\text{Geometric series})\\ &= \pi^{-1-n}.\dfrac{\pi^n-e^n }{\pi-e }(\text{Geometric series})\\ \text{then the limit of $T_n$ }\\ \lim_{n\to\infty}T_n&=\lim_{n\to\infty} \pi^{-1-n}.\dfrac{\pi^n-e^n }{\pi-e } ?? \end{align*} Estoy atrapado en el límite.