$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[10px,#ffd]{\sum_{a = 1}^{6}{1 \over 6} \sum_{b = 1}^{6}{1 \over 6}\sum_{c = 1}^{6} {1 \over 6}\bracks{z^{10}}z^{2a + b + c}} \\[5mm] = &\ {1 \over 216}\bracks{z^{10}} \bracks{\sum_{a = 1}^{6}\pars{z^{2}}^{a}} \pars{\sum_{b = 1}^{6}z^{b}}\pars{\sum_{b = 1}^{6}z^{c}} \\[5mm] = &\ {1 \over 216}\bracks{z^{10}} \pars{z^{2}\,{z^{12} - 1 \over z^{2} - 1}} \pars{z\,{z^{6} - 1 \over z - 1}} \pars{z\,{z^{6} - 1 \over z - 1}} \\[5mm] = &\ {1 \over 216}\bracks{z^{6}}{-z^{24} + 2z^{18} - 2z^{6} + 1 \over \pars{1 - z^{2}}\pars{1 - z}^{2}} = {1 \over 216}\bracks{z^{6}}{-2z^{6} + 1 \over \pars{1 - z^{2}}\pars{1 - z}^{2}} \\[5mm] = &\ -\,{1 \over 108} + {1 \over 216}\,\bracks{z^{6}} \sum_{m = 0}^{\infty}z^{2m} \sum_{n = 0}^{\infty}{-2 \choose n}\pars{-z}^{n} \\[5mm] = &\ -\,{1 \over 108} + {1 \over 216} \sum_{m = 0}^{\infty} \sum_{n = 0}^{\infty}\bracks{{2 + n - 1\choose n} \pars{-1}^{n}}\pars{-1}^{n}\bracks{2m + n = 6} \\[5mm] = &\ -\,{1 \over 108} + {1 \over 216} \sum_{m = 0}^{\infty}\sum_{n = 0}^{\infty}\pars{n + 1} \bracks{n = 6 - 2m} \\[5mm] = &\ -\,{1 \over 108} + {1 \over 216} \sum_{m = 0}^{\infty}\pars{7 - 2m}\bracks{6 - 2m \geq 0} \\[5mm] = &\ -\,{1 \over 108} + {1 \over 216} \sum_{m = 0}^{3}\pars{7 - 2m} = \bbx{7 \over 108} \approx 0.0648 \end{align}
Significa $\ds{\bbx{{14 \over 6 \times 6 \times 6} = {7 \over 108}}}$ .