Cómo conseguir $$\binom n0 + \binom n3 + \binom n6 + \cdots$$
MI INTENTO
$$(1+\omega)^n = \binom n0 + \binom n1 \omega^1 + \binom n2 \omega^2 + \cdots$$
$$(1+\omega^2)^n = \binom n0 + \binom n1 \omega^2 + \binom n2 \omega^4 + \cdots $$
$$(1 + 1)^n = 2^n = \binom n0 + \binom n1 + \binom n2 + \cdots$$
$$(1+\omega)^n + (1+\omega^2)^n + (1 + 1)^n = 3 \left(\binom n0 + \binom n3 + \binom n6 + \cdots\right)$$
Pero, ¿cómo resolver el LHS? Tengo la ecuación requerida en el lado derecho