Sustituir
$$u = \sqrt{\frac{x}{1-x}} \implies \frac{du}{dx} = \frac{\sqrt{x}}{(1-x)^{\frac{3}{2}}} + \frac{1}{2\sqrt{1-x}\sqrt{x}}$$
Entonces la integral se convierte:
$$2 \int \frac{u\arcsin(u)}{(u^2 + 1)^2} \,du$$
Integración por partes $\left(f = \arcsin(u), g'= \frac{u}{(u^2 + 1)^2} \implies f'= \frac{1}{\sqrt{1 - u^2}}, g = -\frac{1}{2(u^2 + 1)}\right)$ :
$$2 \int \frac{u\arcsin(u)}{(u^2 + 1)^2} \,du = -\frac{\arcsin u}{2(u^2+1)} - \int \frac{1}{2\sqrt{1-u^2}(u^2+1)} \,du \text{ (1)}$$
Ahora resolveremos primero esta integral:
$$\int \frac{1}{2\sqrt{1-u^2}(u^2+1)} \,du \text{ (2)}$$
Sustituir $v = \arcsin(u) \implies du = \cos(v) \,dv$ entonces:
$$(2) \implies \int \frac{\cos(v)}{2\sqrt{1-\sin(v)^2}(\sin(v)^2+1)} \,dv$$ $$= \frac{1}{2} \int \frac{1}{\sin(v)^2+1} \,dv$$ $$= \frac{1}{2} \int \sec^2(v) \cdot \frac{1}{2\tan(v)^2+1} \,dv \text{ (3)}$$
Sustituir $w = \sqrt{2}\tan(v) \implies \frac{dw}{dv} = \sqrt{2}\sec^2(v)$ entonces:
$$(3) \implies \frac{1}{2\sqrt{2}} \int \frac{1}{w^2+1} \,dw = \frac{1}{2\sqrt{2}} \arctan(w)$$
Deshaciendo la sustitución, obtenemos:
$$\int \frac{1}{2\sqrt{1-u^2}(u^2+1)} \,du = \frac{\arctan(\frac{\sqrt{2}u}{\sqrt{1-u^2}})}{2\sqrt{2}}$$
Enchúfalo de nuevo en $(1)$ y deshacer la sustitución para obtener la respuesta.