$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{\int_{0}^{1}{\ln\pars{2} - \ln\pars{1 + \raíz{1 - x^{2}}} \over x}\,\dd x
={\pi^{2} - 12\ln^{2}\pars{2} \over 24}:\ {\large ?}}$.
\begin{align}&\color{#66f}{\large%
\int_{0}^{1}{\ln\pars{2} - \ln\pars{1 + \root{1 - x^{2}}} \over x}\,\dd x}
=-\
\overbrace{\int_{0}^{1}\ln\pars{1 + \root{1 - x^{2}} \over 2}\,{\dd x \over x}}
^{\dsc{x} \equiv \dsc{\sin\pars{\theta}}}
\\[5mm]&=-\ \overbrace{\int_{0}^{\pi/2}\ln\pars{1 + \cos\pars{\theta} \over 2}\,
{\cos\pars{\theta}\,\dd\theta \over \sin\pars{\theta}}}
^{\dsc{t}\equiv\dsc{\tan\pars{\theta \over 2}}}\ =\ \overbrace{%
\int_{0}^{1}\ln\pars{1 + t^{2}}\,{1 - t^{2} \over \pars{1 + t^{2}}t}\,\dd t}
^{\dsc{t} \mapsto \dsc{t^{1/2}}}
\\[5mm]&=\half\int_{0}^{1}\ln\pars{1 + t}\,\
\overbrace{{1 - t \over \pars{1 + t}t}}^{\dsc{{1 \over t} - {2 \over 1 + t}}}
\,\dd t
=\half\int_{0}^{1}{\ln\pars{1 + t} \over t}\,\dd t
-\int_{0}^{1}{\ln\pars{1 + t} \over 1 + t}\,\dd t
\\[5mm]&=\half\int_{0}^{-1}{\ln\pars{1 - t} \over t}\,\dd t
-\bracks{\half\,\ln^{2}\pars{1 + t}}_{0}^{1}
=-\,\half\int_{0}^{-1}\Li{2}'\pars{t}\,\dd t -\half\,\ln^{2}\pars{2}
\\[5mm]&=-\,\half\,\ \overbrace{\Li{2}\pars{-1}}
^{\dsc{-\,{\pi^{2} \over 12}}}\ -\ \half\,\ln^{2}\pars{2}
=\color{#66f}{\large{\pi^{2} - 12\ln^{2}\pars{2} \over 24}}
\end{align}