Dejemos que $t=\sqrt{x}$ \begin {Ecuación} I = \int\limits_ {1}^{a^{2}} \frac { \ln x}{ \sqrt {x}(x+a)} dx = 4 \int\limits_ {1}^{a} \frac { \ln t}{t^{2}+a} dt \end {Ecuación}
Integrando por partes, tenemos \begin {align} I_{1} &= \int\limits_ {1}^{a} \frac { \ln t}{t^{2}+a} dt \\ &= \frac { \ln t}{ \sqrt {a}} \tan ^{-1} \left ( \frac {t}{ \sqrt {a}} \right ) \Big |_{1}^{a} \, - \frac {1}{ \sqrt {a}} \int\limits_ {1}^{a} \frac {1}{t} \tan ^{-1} \left ( \frac {t}{ \sqrt {a}} \right ) dt \\ &= \frac { \ln a}{ \sqrt {a}} \tan ^{-1}( \sqrt {a}) \, - \frac {1}{ \sqrt {a}} \int\limits_ {1}^{a} \frac {1}{t} \tan ^{-1} \left ( \frac {t}{ \sqrt {a}} \right ) dt \end {align}
Dejemos que $y=t/ \sqrt{a}$ \begin {align} I_{2} &= \int\limits_ {1}^{a} \frac {1}{t} \tan ^{-1} \left ( \frac {t}{ \sqrt {a}} \right ) dt = \int\limits_ {1/ \sqrt {a}}^{ \sqrt {a}} \frac {1}{y} \tan ^{-1}(y) dy \\ \tag {a} &= \frac {i}{2} \left [ \int\limits_ {1/ \sqrt {a}}^{ \sqrt {a}} \frac { \ln (1-iy)}{y} dy \, - \int\limits_ {1/ \sqrt {a}}^{ \sqrt {a}} \frac { \ln (1+iy)}{y} dy \right ] \\ \tag {b} &= \frac {i}{2} \left [ \mathrm {Li}_{2}(-iy) - \mathrm {Li}_{2}(iy) \right ] \Big |_{1/ \sqrt {a}}^{ \sqrt {a}} \\ &= \frac {i}{2} \left ( \left [ \mathrm {Li}_{2}(-i \sqrt {a}) + \mathrm {Li}_{2} \left ( \frac {i}{ \sqrt {a}} \right ) \right ] - \left [ \mathrm {Li}_{2}(i \sqrt {a}) + \mathrm {Li}_{2} \left ( \frac {-i}{ \sqrt {a}} \right ) \right ] \right ) \\ \tag {c} &= \frac {i}{2} \left ( \left [ - \frac { \pi ^{2}}{6} - \frac {1}{2} \ln ^{2}(i \sqrt {a}) \right ] - \left [ - \frac { \pi ^{2}}{6} - \frac {1}{2} \ln ^{2}(-i \sqrt {a}) \right ] \right ) \\ \tag {d} &= \frac { \pi }{4} \ln a \end {align}
a. $\tan^{-1}(y) = \frac{i}{2} [\ln (1-iy) - \ln (1+iy)]$
b. Función dilogaritmo \begin {Ecuación} \mathrm {Li}_{2}(z) = - \int_ {0}^{z} \frac { \ln (1-x)}{x} dx \end {Ecuación}
c. Utilizar la identidad \begin {Ecuación} \mathrm {Li}_{2}(z) + \mathrm {Li}_{2}(1/z) = - \frac { \pi ^{2}}{6} - \frac {1}{2} \ln ^{2}(-z) \end {Ecuación}
d. $\ln (\pm iz) = \ln z \pm i\pi /2$
Ahora tenemos \begin {Ecuación} I = 4I_{1} = \frac {4}{ \sqrt {a}} ( \ln a) \tan ^{-1}( \sqrt {a}) \, - \frac { \pi }{ \sqrt {a}} \ln a \end {Ecuación}