¿Alguien tiene una prueba de que $$\sum_{n=1}^\infty \frac{(-1)^{n+1}}{2n-1}\mbox{sech}\left(\frac{(2n-1)\pi}{2}\right)=\frac{\pi}{8}$$
Respuesta
¿Demasiados anuncios?$$f(z) = \frac{1}{2z\cosh(z\pi)}$$
para que la suma en cuestión sea la mitad de
$$\sum_{n=-\infty}^\infty (-1)^n f\left(\frac{2n+1}{2}\right) = \sum \operatorname*{Res} (\pi \sec(\pi z)f(z))\text{ at poles of }f$$
$f$ tiene polos en $0$ y en $b_n = \frac{i(2n+1)}{2}$ para los enteros $n$ . Entonces
$$\operatorname*{Res}_{z=0} (\pi \sec(\pi z)f(z)) = \frac{\pi}{2}$$ $$\operatorname*{Res}_{z=b_n} (\pi \sec(\pi z)f(z)) = -\frac{(-1)^n}{1+2n} \operatorname{sech}\left(\pi \frac{2n+1}{2}\right)$$
Entonces
$$\sum_{n=-\infty}^\infty \frac{(-1)^n}{1+2n} \operatorname{sech}\left(\pi \frac{2n+1}{2}\right)= -\sum_{n=-\infty}^\infty \frac{(-1)^n}{1+2n} \operatorname{sech}\left(\pi \frac{2n+1}{2}\right) + \frac{\pi}{2} \implies\\ \sum_{n=-\infty}^\infty \frac{(-1)^n}{1+2n} \operatorname{sech}\left(\pi \frac{2n+1}{2}\right) = \frac{\pi}{4} $$
Así que, finalmente, resolviendo la suma y dividiendo por 2:
$$\sum_{n=0}^\infty \frac{(-1)^n}{1+2n} \operatorname{sech}\left(\pi \frac{2n+1}{2}\right) = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{2n-1} \operatorname{sech}\left(\pi \frac{2n-1}{2}\right) =\frac{\pi}{8}$$