He aquí una explicación que Pavel Etingof me ha dado por correo electrónico. ¡Gracias Pavel!
Cada $\sigma\in S_{n}$ satisface
$\sum\limits_{i}\left( n-i+1\right) y_{\sigma1}\ast\cdots\ast\left[ x,y_{\sigma i}\right] \ast\cdots\ast y_{\sigma n}$
$=n\left[ x,y_{\sigma1}\right] \ast y_{\sigma2}\ast\cdots\ast y_{\sigma n}$
$+\sum\limits_{i>1}\left( n-i+1\right) y_{\sigma1}\ast\cdots\ast\left[ x,y_{\sigma i}\right] \ast\cdots\ast y_{\sigma n}$ .
Pero como
$\sum\limits_{i>1}\left( n-i+1\right) y_{\sigma1}\ast\cdots\ast\underbrace{\displaystyle \left[ x,y_{\sigma i}\right] }_{\displaystyle\substack{\displaystyle =x\ast y_{\sigma i}-y_{\sigma i}\ast x\\\displaystyle \text{(since the inclusion of }\mathfrak{L}\\\displaystyle \text{into }\operatorname*{Sym} \nolimits^{\ast}\mathfrak{L}\text{ is a morphism}\\\displaystyle \text{of Lie algebras)} }}\ast\cdots\ast y_{\sigma n}$
$=\sum\limits_{i>1}\left( n-i+1\right) y_{\sigma1}\ast\cdots\ast\underbrace{\displaystyle \left( x\ast y_{\sigma i}-y_{\sigma i}\ast x\right) \ast\cdots\ast y_{\sigma n} }_{\substack{\displaystyle =x\ast y_{\sigma i}\ast\cdots\ast y_{\sigma n}-y_{\sigma i}\ast x\ast\cdots\ast y_{\sigma n}\\\displaystyle \text{(by the induction hypothesis, since }i>1\text{)}}}$
$=\sum\limits_{i>1}\left( n-i+1\right) y_{\sigma1}\ast\cdots\ast x\ast y_{\sigma i}\ast\cdots\ast y_{\sigma n}$
$-\sum\limits_{i>1}\left( n-i+1\right) y_{\sigma1}\ast\cdots\ast y_{\sigma i}\ast x\ast\cdots\ast y_{\sigma n}$
$= \sum\limits_{i>0}\left( n-\left( i+1\right) +1\right) \underbrace{\displaystyle y_{\sigma1}\ast\cdots\ast x\ast y_{\sigma \left(i+1\right)}\ast\cdots\ast y_{\sigma n}}_{\displaystyle =y_{\sigma1}\ast\cdots\ast y_{\sigma i}\ast x\ast\cdots\ast y_{\sigma n}}$
$-\sum\limits_{i>1}\left( n-i+1\right) y_{\sigma1}\ast\cdots\ast y_{\sigma i}\ast x\ast\cdots\ast y_{\sigma n}$ (aquí hemos sustituido $i+1$ para $i$ en la primera suma)
$=\sum\limits_{i>0}\left( n-\left( i+1\right) +1\right) y_{\sigma1}\ast\cdots\ast y_{\sigma i}\ast x\ast\cdots\ast y_{\sigma n}$
$-\sum\limits_{i>1}\left( n-i+1\right) y_{\sigma1}\ast\cdots\ast y_{\sigma i}\ast x\ast\cdots\ast y_{\sigma n}$
$=\left( n-1\right) y_{\sigma1}\ast x\ast\cdots\ast y_{\sigma n}-\sum\limits _{i>1}y_{\sigma1}\ast\cdots\ast y_{\sigma i}\ast x\ast\cdots\ast y_{\sigma n}$ ,
esto se convierte en
$\sum\limits_{i}\left( n-i+1\right) y_{\sigma1}\ast\cdots\ast\left[ x,y_{\sigma i}\right] \ast\cdots\ast y_{\sigma n}$
$=n\left[ x,y_{\sigma1}\right] \ast y_{\sigma2}\ast\cdots\ast y_{\sigma n}+\left( n-1\right) y_{\sigma1}\ast x\ast\cdots\ast y_{\sigma n}$
$-\sum\limits_{i>1}y_{\sigma1}\ast\cdots\ast y_{\sigma i}\ast x\ast\cdots\ast y_{\sigma n}$
$=n\left[ x,y_{\sigma1}\right] \ast y_{\sigma2}\ast\cdots\ast y_{\sigma n}+ny_{\sigma1}\ast x\ast\cdots\ast y_{\sigma n}$
$-y_{\sigma1}\ast x\ast\cdots\ast y_{\sigma n}-\sum\limits_{i>1}y_{\sigma1}\ast \cdots\ast y_{\sigma i}\ast x\ast\cdots\ast y_{\sigma n}$
$=n\left[ x,y_{\sigma1}\right] \ast y_{\sigma2}\ast\cdots\ast y_{\sigma n}+ny_{\sigma1}\ast x\ast\cdots\ast y_{\sigma n}$
$-\sum\limits_{i>0}y_{\sigma1}\ast\cdots\ast y_{\sigma i}\ast x\ast\cdots\ast y_{\sigma n}$ .
Así, (1.3.7.7) se reescribe como
$\dfrac{1}{n!}x\ast\sum\limits_{\sigma}y_{\sigma1}\ast\cdots\ast y_{\sigma n}=\left( \text{symmetrized product of }x,y_{1},...,y_{n}\right) $
$+\dfrac{1}{\left( n+1\right) !}\sum\limits_{\sigma}n\left[ x,y_{\sigma1}\right] \ast y_{\sigma2}\ast\cdots\ast y_{\sigma n}+\dfrac{1}{\left( n+1\right) !}\sum\limits_{\sigma}ny_{\sigma1}\ast x\ast\cdots\ast y_{\sigma n}$
$-\dfrac{1}{\left( n+1\right) !}\sum\limits_{\sigma}\sum\limits_{i>0}y_{\sigma1}\ast\cdots\ast y_{\sigma i}\ast x\ast\cdots\ast y_{\sigma n}$ .
Desde
$\left( \text{symmetrized product of }x,y_{1},...,y_{n}\right) $
$=\dfrac{1}{\left( n+1\right) !}\sum\limits_{\sigma}\left( \sum\limits_{i>0}y_{\sigma1} \ast\cdots\ast y_{\sigma i}\ast x\ast\cdots\ast y_{\sigma n}+x\ast y_{\sigma 1}\ast\cdots\ast y_{\sigma n}\right) $ ,
esto se simplifica a
$\dfrac{1}{n!}x\ast\sum\limits_{\sigma}y_{\sigma1}\ast\cdots\ast y_{\sigma n} =\dfrac{1}{\left( n+1\right) !}\sum\limits_{\sigma}x\ast y_{\sigma1}\ast\cdots\ast y_{\sigma n}$
$+\dfrac{1}{\left( n+1\right) !}\sum\limits_{\sigma}n\left[ x,y_{\sigma1}\right] \ast y_{\sigma2}\ast\cdots\ast y_{\sigma n}+\dfrac{1}{\left( n+1\right) !}\sum\limits_{\sigma}ny_{\sigma1}\ast x\ast\cdots\ast y_{\sigma n}$ .
Así,
$\dfrac{1}{\left( n+1\right) !}\sum\limits_{\sigma}n\left[ x,y_{\sigma1}\right] \ast y_{\sigma2}\ast\cdots\ast y_{\sigma n}+\dfrac{1}{\left( n+1\right) !}\sum\limits_{\sigma}ny_{\sigma1}\ast x\ast\cdots\ast y_{\sigma n}$
$=\dfrac{1}{n!}x\ast\sum\limits_{\sigma}y_{\sigma1}\ast\cdots\ast y_{\sigma n} -\dfrac{1}{\left( n+1\right) !}\sum\limits_{\sigma}x\ast y_{\sigma1}\ast\cdots\ast y_{\sigma n}$
$=\underbrace{\displaystyle \left( \dfrac{1}{n!}-\dfrac{1}{\left( n+1\right) !}\right) }_{\displaystyle =\dfrac{n}{\left( n+1\right) !}}\sum\limits_{\sigma}x\ast y_{\sigma1}\ast \cdots\ast y_{\sigma n}=\dfrac{n}{\left( n+1\right) !}\sum\limits_{\sigma}x\ast y_{\sigma1}\ast\cdots\ast y_{\sigma n}$ .
Dividir esto por $\dfrac{n}{\left( n+1\right) !}$ para obtener
$\sum\limits_{\sigma}\left[ x,y_{\sigma1}\right] \ast y_{\sigma2}\ast\cdots\ast y_{\sigma n}+\sum\limits_{\sigma}y_{\sigma1}\ast x\ast\cdots\ast y_{\sigma n}$
$=\sum\limits_{\sigma}x\ast y_{\sigma1}\ast\cdots\ast y_{\sigma n}$ .
En otras palabras,
$0=\sum\limits_{\sigma}\left( x\ast y_{\sigma1}\ast\cdots\ast y_{\sigma n} -y_{\sigma1}\ast x\ast\cdots\ast y_{\sigma n}-\left[ x,y_{\sigma1}\right] \ast y_{\sigma2}\ast\cdots\ast y_{\sigma n}\right) $
$=\sum\limits_{\sigma}\left\lbrace x,y_{\sigma1},...,y_{\sigma n}\right\rbrace =\left( n-1\right) !\sum\limits_{i}\left\lbrace x,y_{i},y_{1},...,\widehat{y_{i}},...,y_{n} \right\rbrace $
(aquí usamos que $\left\lbrace x_{1},...,x_{n+1}\right\rbrace $ es simétrica en el último $n-1$ variables, de modo que cada $\sigma\in S_{n}$ satisface $\left\lbrace x,y_{\sigma1},...,y_{\sigma n}\right\rbrace =\left\lbrace x,y_{i},y_{1} ,...,\widehat{y_{i}},...,y_{n}\right\rbrace $ para $i=\sigma1$ ).
Así, $\sum\limits_{i}\left\lbrace x,y_{i},y_{1},...,\widehat{y_{i}},...,y_{n}\right\rbrace =0$ , qed.