Dejemos que $g(x,y,z)=x^2+y^2-z$ como resultado $$\nabla g(x,y,z)=(2x,2y,-1)$$ y $$n=\frac{\nabla g}{\left\| \nabla g.\overset{\to }{\mathop{k}}\, \right\|}=(2x,2y,-1)$$ tenemos \begin {align} & \int {F.n\\N,ds}= \iint\limits_ {D}{ \left ( y({{x}^{2}}+{{y}^{2}})\,,\,-x({{x}^{2}}+{{y}^{2}})+ \sin ({{x}^{2}}+{{y}^{2}})\,,\,{{e}^{({{x}^{2}}+{{y}^{2}})}} \right )}.(2x,2y,-1)dA \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,= \iint\limits_ {D}{[2y \sin ({{x}^{2}}+{{y}^{2}})-{{e}^{({{x}^{2}}+{{y}^{2}})}}]dA} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,= \int_ {0}^{2 \pi }{ \int_ {0}^{1}{(2{{r}^{2}} \sin \theta \sin ({{r}^{2}})-r{{e}^{{{r}^{2}}}})\,d}}rd \theta \\ \end {align}
0 votos
Mira esto youtube.com/playlist?list=PLGqzsq0erqU7h6_bpE-CgJp4iX5aRju28