1 votos

¿Cómo tener esta integral definitiva?

Supongamos que una función $f$ de $x$ y $y$ se definirá de la siguiente manera: $$f(x,y) = \begin{cases} \frac{21}{4}x^2y & \text{for $ x^2 \leq y \leq 1 $,} \\ 0 & \text{otherwise. } \\ \end{cases}$$ Tengo que determinar el valor de la integral para la que $y\leq x$ también tiene.

La respuesta es $\frac{3}{20}$ y también lo consigo utilizando la figura de $x$ y $y$ pero no sé cómo conseguirlo con los cálculos.

2voto

Oli Puntos 89

Encontramos $$\int_{x=0}^1 \left(\int_{y=x^2}^{x}\frac{21}{4}x^2y\,dy\right)\,dx.$$ La integración con respecto a $y$ da $\frac{21}{8}x^2(x^2-x^4)$ . Integración con respecto a $x$ produce $\frac{21}{8} \left(\frac{1}{5}-\frac{1}{7}\right)$ . Simplifica.

2voto

izip Puntos 131

La condición dada $y\le x$ y $x^2\le y\le1$ implica $x^2\le y\le x$ .

Desde $x^2\le x$ , $0\le x\le 1$ .

$$\int_{0}^1\int_{x^2}^x\frac{21}{4}x^2ydydx=\int_{0}^1\left[\frac{21}{8}x^2y^2\right]^x_{x^2}dx=\int_{0}^1\frac{21}{8}x^2(x^2-x^4)=\frac{21}{8}\left[\frac{x^5}{5}-\frac{x^7}{7}\right]^1_{0}=\frac{3}{20}$$

0voto

Felix Marin Puntos 32763

$\newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\expo}{{\rm e}}% \newcommand{\ic}{{\rm i}}% \newcommand{\imp}{\Longrightarrow}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\pp}{{\cal P}}% \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert #1 \right\vert}$

\begin {align} { \cal I} & \equiv \int_ {- \infty }^{ \infty }{ \rm d}x \int_ {- \infty }^{ \infty }{ \rm d}y\Ns, {21 \over 4}\N,x^{2}\Ny, \Theta\pars {y - x^{2}} \Theta\pars {1 - y} \Theta\pars {x - y} \\ [3mm]&= {21 \over 4} \int_ {- \infty }^{1}{ \rm d}y,y \quad \overbrace { \int_ {- \infty }^{ \infty }{ \rm d}x, x^{2}\, \Theta\pars {y - x^{2}} \Theta\pars {x - y}}^{ \equiv\ { \cal J}} \end {align}

\begin {align} { \cal J} &= -\,{1 \over 3} \int_ {- \infty }^{ \infty }{ \rm d}x, x^{3}\, \bracks {% -2x\, \delta\pars {y - x^{2}} \Theta\pars {x - y} + \Theta\pars {y - x^{2}} \delta\pars {x - y}} \\ [3mm]&= {2 \over 3} \int_ {- \infty }^{ \infty }{ \rm d}x,x^{4}\N-, \Theta\pars {y}\, { \delta\pars {x - y^{1/2}} \over 2 \verts {x}}\, \Theta\pars {y^{1/2} - y} - {1 \over 3}\,y^{3}\, \Theta\pars {y - y^{2}} \\ [3mm]&= {1 \over 3}y^{3/2}\, \Theta\pars {y}\, \Theta\pars {y \bracks {1 -y}} - {1 \over 3}\,y^{3}\, \Theta\pars {y - y^{2}} = {1 \over 3} \pars {y^{3/2} - y^{3}} \Theta\pars {y} \Theta\pars {1 - y} \end {align}

\begin {align} { \cal I} &= {7 \over 4} \int_ {0}^{1} \pars {y^{5/2}} - y^{4}},{ \rm d}y = {7 \over 4} \pars {{2 \over 7} - {1 \over 5}} = \color {#ff0000}{ \large {3 \over 20}} \end {align}

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X