2 votos

¿Cómo podemos demostrar que $\sum_{i=1}^{\infty}\sum_{j=1}^{2k}(-1)^{j-1}{2\over i+j}=H_k?$

Dada la doble suma $(1)$

$$\sum_{i=1}^{\infty}\sum_{j=1}^{2k}(-1)^{j-1}{2\over i+j}=\color{blue}{H_k}\tag1$$ Dónde $H_k$ es el número armónico n-ésimo

¿Cómo se puede demostrar $(1)$ ?

Reescritura $(1)$ como

$$\sum_{i=1}^{\infty}\left({2\over i+1}-{2\over i+2}+{2\over i+3}-\cdots+{2\over i+k}\right)\tag2$$

Reescritura $(2)$ como

$$\sum_{i=1}^{\infty}\left({2\over (i+1)(i+2)}+{2\over (i+3)(i+4)}+{2\over (i+5)(i+6)}+\cdots+{2\over (i+k)(i+k+1)}\right)\tag3$$

Se requiere ayuda, no estoy seguro de cuál es el siguiente paso. Gracias.

5voto

Roger Hoover Puntos 56

Hay un problema: si $k$ es impar, el término principal de $(2)$ se comporta como $\frac{C}{i}$ , dando lugar a una suma divergente.

Por otro lado, si $k=2h$ es incluso entonces $(2)$ es una suma telescópica absolutamente convergente:

$$ \sum_{i\geq 1}\left(\frac{2}{i+1}-\frac{2}{i+2}+\frac{2}{i+3}-\frac{2}{i+4}+\ldots+\frac{2}{i+2h-1}-\frac{2}{i+2h}\right) $$ que claramente equivale a $$ \frac{2}{1+1}+\frac{2}{1+3}+\ldots+\frac{2}{2h} = H_h. $$

1voto

Felix Marin Puntos 32763

$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin {align} \sum_ {i = 1}^{ \infty } \sum_ {j = 1}^{2k} \pars {-1}^{\,j - 1}{2 \over i + j} & = 2 \sum_ {i = 1}^{ \infty } \sum_ {j = 1}^{2k} \pars {-1}^{\,j - 1} \int_ {0}^{1}x^{i + j - 1}\, \dd x = 2 \sum_ {i = 1}^{ \infty }x^{i} \int_ {0}^{1} \sum_ {j = 1}^{2k} \pars {-x}^{\\}}, j - 1}{\}, \dd x \\ [5mm] & = 2 \sum_ {i = 1}^{ \infty }x^{i} \int_ {0}^{1}{ \pars {-x}^{2k} - 1 \over -x - 1}\, \dd x = 2 \int_ {0}^{1}{1 - x^{2k} \over 1 + x} \sum_ {i = 1}^{ \infty x^i.., \dd x \\ [5mm] & = 2 \int_ {0}^{1}{x - x^{2k + 1} \over 1 - x^{2}}\, \dd x \,\,\, \stackrel {x^{2}\ \mapsto\ x}{=}\,\,\, \int_ {0}^{1}{x^{k} - 1 \over x - 1}\, \dd x = \int_ {0}^{1} \sum_ {n = 1}^{k}x^{n - 1}\, \dd x \\ [5mm] & = \sum_ {n = 1}^{k}{1 \over n} = \bbx { \ds {H_{k}} \end {align}

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X