dejar $0\lt a_1\lt a_2\lt....\lt a_{20}$ ( $a_i\in\mathbb R$ )y para todo i $\in\{1,2,...,20\}$ definir $$b_i:(0,\infty)\to \mathbb R$$$$ b_i(x)= \left\ { \begin {array}{c} \frac {a_i}{x} ;x \le a_i \\ \\ \frac {x}{a_i};x \gt a_i \end {array} \right.$$ how find minimum value of $ f $ ? such that $ f(x)= \prod_ {i=1}^{20}b_i(x)$
Gracias de antemano