Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

11 votos

Evalúe

¿Si es tan amable Muéstrame cómo evaluar este límite? lim

2voto

psychotik Puntos 171

Un simple cálculo muestra que

\int_{0}^{\pi} \cosh(2\cos x) \, dx = \pi \sum_{k=0}^{\infty} \frac{1}{(k!)^2}.

Así queda por encontrar el límite

\lim_{n\to\infty} \pi n^3 \sum_{k=n+1}^{\infty} \frac{1}{(k!)^2} .

Pero desde

\sum_{k=n+1}^{\infty} \frac{1}{(k!)^2} \leq \frac{1}{(n!)^2} \sum_{k=n+1}^{\infty} \frac{1}{k^2} = O\left( \frac{1}{(n!)^2} \right),

se deduce que el límite va a cero.

2voto

\int_0^{\pi} \cosh(2\cos x)dx=\sum_{k=0}^{\infty}\dfrac {2^{2k}}{(2k)!}\int_0^\pi \cos^{2k}xdx=\sum_{k=0}^{\infty}\dfrac{\pi \cdot2^{2k}}{(2k)!}\prod_{j=1}^{\infty}\dfrac{2j-1}{2j}=\pi \sum_{k=0}^{\infty}\dfrac{1}{(k!)^2}$ $, Lo que quieres es el límite de $\sum_{k=1}^{\infty}\dfrac{\pi n^3}{((n+k)!)^2} $ 0\leq\sum_{k=1}^{\infty}\dfrac{\pi n^3}{((n+k)!)^2}\leq \dfrac{n^3}{(n!)^2}(1+\frac{1}{n^2} +\frac{1}{n^4}..) Squeeze teorema y obtener la respuesta.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X