¿Si es tan amable Muéstrame cómo evaluar este límite? $$\lim_{n \to \infty} n^3 \left(\int_0^{\pi}\cosh(2\cos(x)) dx - \pi\sum_{k=0}^n \frac{1}{(k!)^2} \right)$$
Respuestas
¿Demasiados anuncios?Un simple cálculo muestra que
$$ \int_{0}^{\pi} \cosh(2\cos x) \, dx = \pi \sum_{k=0}^{\infty} \frac{1}{(k!)^2}. $$
Así queda por encontrar el límite
$$ \lim_{n\to\infty} \pi n^3 \sum_{k=n+1}^{\infty} \frac{1}{(k!)^2} .$$
Pero desde
$$ \sum_{k=n+1}^{\infty} \frac{1}{(k!)^2} \leq \frac{1}{(n!)^2} \sum_{k=n+1}^{\infty} \frac{1}{k^2} = O\left( \frac{1}{(n!)^2} \right),$$
se deduce que el límite va a cero.
$$\int_0^{\pi} \cosh(2\cos x)dx=\sum_{k=0}^{\infty}\dfrac {2^{2k}}{(2k)!}\int_0^\pi \cos^{2k}xdx=\sum_{k=0}^{\infty}\dfrac{\pi \cdot2^{2k}}{(2k)!}\prod_{j=1}^{\infty}\dfrac{2j-1}{2j}=\pi \sum_{k=0}^{\infty}\dfrac{1}{(k!)^2}$ $, Lo que quieres es el límite de $\sum_{k=1}^{\infty}\dfrac{\pi n^3}{((n+k)!)^2} $ $$0\leq\sum_{k=1}^{\infty}\dfrac{\pi n^3}{((n+k)!)^2}\leq \dfrac{n^3}{(n!)^2}(1+\frac{1}{n^2} +\frac{1}{n^4}..)$ $Squeeze teorema y obtener la respuesta.