Caso $1$ : $\text{Re}(t)\geq0$
Dejemos que $u(x,t)=X(x)T(t)$ ,
Entonces $X(x)T'(t)-X''(x)T(t)-2X'(x)T(t)=0$
$X(x)T'(t)=X''(x)T(t)+2X'(x)T(t)$
$X(x)T'(t)=(X''(x)+2X'(x))T(t)$
$\dfrac{T'(t)}{T(t)}=\dfrac{X''(x)+2X'(x)}{X(x)}=-(f(s))^2-1$
$\begin{cases}\dfrac{T'(t)}{T(t)}=-(f(s))^2-1\\X''(x)+2X'(x)+((f(s))^2+1)X(x)=0\end{cases}$
$\begin{cases}T(t)=c_3(s)e^{-t((f(s))^2+1)}\\X(x)=\begin{cases}c_1(s)e^{-x}\sin(xf(s))+c_2(s)e^{-x}\cos(xf(s))&\text{when}~f(s)\neq0\\c_1xe^{-x}+c_2e^{-x}&\text{when}~f(s)=0\end{cases}\end{cases}$
$\therefore u(x,t)=C_1xe^{-x-t}+C_2e^{-x-t}+\int_sC_3(s)e^{-x-t((f(s))^2+1)}\sin(xf(s))~ds+\int_sC_4(s)e^{-x-t((f(s))^2+1)}\cos(xf(s))~ds~\text{or}~C_1xe^{-x-t}+C_2e^{-x-t}+\sum\limits_sC_3(s)e^{-x-t((f(s))^2+1)}\sin(xf(s))+\sum\limits_sC_4(s)e^{-x-t((f(s))^2+1)}\cos(xf(s))$
Caso $2$ : $\text{Re}(t)\leq0$
Dejemos que $u(x,t)=X(x)T(t)$ ,
Entonces $X(x)T'(t)-X''(x)T(t)-2X'(x)T(t)=0$
$X(x)T'(t)=X''(x)T(t)+2X'(x)T(t)$
$X(x)T'(t)=(X''(x)+2X'(x))T(t)$
$\dfrac{T'(t)}{T(t)}=\dfrac{X''(x)+2X'(x)}{X(x)}=(f(s))^2-1$
$\begin{cases}\dfrac{T'(t)}{T(t)}=(f(s))^2-1\\X''(x)+2X'(x)+(1-(f(s))^2)X(x)=0\end{cases}$
$\begin{cases}T(t)=c_3(s)e^{t((f(s))^2-1)}\\X(x)=\begin{cases}c_1(s)e^{-x}\sinh(xf(s))+c_2(s)e^{-x}\cosh(xf(s))&\text{when}~f(s)\neq0\\c_1xe^{-x}+c_2e^{-x}&\text{when}~f(s)=0\end{cases}\end{cases}$
$\therefore u(x,t)=C_1xe^{-x-t}+C_2e^{-x-t}+\int_sC_3(s)e^{-x+t((f(s))^2-1)}\sinh(xf(s))~ds+\int_sC_4(s)e^{-x+t((f(s))^2-1)}\cosh(xf(s))~ds~\text{or}~C_1xe^{-x-t}+C_2e^{-x-t}+\sum\limits_sC_3(s)e^{-x+t((f(s))^2-1)}\sinh(xf(s))+\sum\limits_sC_4(s)e^{-x+t((f(s))^2-1)}\cosh(xf(s))$
Por lo tanto, $u(x,t)=\begin{cases}C_1xe^{-x-t}+C_2e^{-x-t}+\int_sC_3(s)e^{-x-t((f(s))^2+1)}\sin(xf(s))~ds+\int_sC_4(s)e^{-x-t((f(s))^2+1)}\cos(xf(s))~ds&\text{when}~\text{Re}(t)\geq0\\C_1xe^{-x-t}+C_2e^{-x-t}+\int_sC_3(s)e^{-x+t((f(s))^2-1)}\sinh(xf(s))~ds+\int_sC_4(s)e^{-x+t((f(s))^2-1)}\cosh(xf(s))~ds&\text{when}~\text{Re}(t)\leq0\end{cases}$
o $\begin{cases}C_1xe^{-x-t}+C_2e^{-x-t}+\sum\limits_sC_3(s)e^{-x-t((f(s))^2+1)}\sin(xf(s))+\sum\limits_sC_4(s)e^{-x-t((f(s))^2+1)}\cos(xf(s))&\text{when}~\text{Re}(t)\geq0\\C_1xe^{-x-t}+C_2e^{-x-t}+\sum\limits_sC_3(s)e^{-x+t((f(s))^2-1)}\sinh(xf(s))+\sum\limits_sC_4(s)e^{-x+t((f(s))^2-1)}\cosh(xf(s))&\text{when}~\text{Re}(t)\leq0\end{cases}$
Esta es ya la solución general de $u_t-u_{xx}-2u_x=0$ . Obsérvese que cuando no hay C.I., la forma de $f(s)$ puede elegir arbitrariamente, pero cuando se dan C.I., la forma de $f(s)$ y la elección de si se utiliza el núcleo de integración o el núcleo de suma debe elegir sabiamente con el fin de acomodar los C.I. para obtener la forma más agradable de la solución, especialmente el número de C.I. es más de dos.