$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin {align} & \bbox [5px,#ffd]{ \int_ {z\ \in\ 2 \expo { \large\ic\pars { \pi /2, \pi }}} \pars { \ic\overline {z} + z} \, \dd z} = \int_ { \pi /2}^{ \pi } \bracks { \ic\pars {2 \expo {- \ic\theta }} + 2 \expo { \ic\theta }}\,2 \expo { \ic\theta } \ic\ , \dd\theta \\ [5mm] = &\\N- \int_ { \pi /2}^{ \pi } \pars {-4 + 4 \ic\expo {2 \ic\theta }} \dd\theta = \bbx {4 - 2 \pi } \\ &\ \end {align}