Voy a esbozar una forma de transformar la integral en una suma. La suma parece difícil, pero converge y se comprueba numéricamente con el resultado indicado.
Comienza sustituyendo $u=\log{\tan{x}}$ . Entonces
$$du = \frac{1}{\tan{x}} \sec^2{x} \, dx = \left ( \frac{1}{\tan{x}} + \tan{x} \right ) dx = (e^{-u} + e^u) \, dx $$
y
$$\begin{align} \int_{\pi/4}^{\pi/2} dx \: \ln (\ln(\tan x)) &= \int_0^{\infty} du \: \frac{\log{u}}{e^u + e^{-u}} \\ &= \int_0^{\infty} du \: \frac{e^{-u} \log{u}}{1+e^{-2 u}} \\ &= \int_0^{\infty} du \: e^{-u} \log{u} \sum_{k=0}^{\infty} (-1)^k e^{-2 k u} \end{align}$$
Invertir el orden de la suma y la integral, lo que se justifica por el Teorema de Fubini (tanto la suma como la integral son absolutamente convergentes). Entonces podemos escribir
$$\begin{align} \int_{\pi/4}^{\pi/2} dx \: \ln (\ln(\tan x)) &= \sum_{k=0}^{\infty} (-1)^k \int_0^{\infty} du \: e^{-(2 k+1) u} \log{u} \\ &= \sum_{k=0}^{\infty} \frac{(-1)^k}{2 k+1} \int_0^{\infty} du \: e^{-u} \log{u} - \sum_{k=0}^{\infty} (-1)^k \frac{\log{(2 k+1)}}{2 k+1} \int_0^{\infty} du \: e^{-u} \\ &= -\frac{\pi}{4} \gamma + \sum_{k=1}^{\infty} (-1)^{k+1} \frac{\log{(2 k+1)}}{2 k+1} \\ \end{align} $$
donde $\gamma$ es la constante de Euler-Mascheroni. La suma del signo de la derecha es conocido :
$$ \sum_{k=1}^{\infty} (-1)^{k+1} \frac{\log{(2 k+1)}}{2 k+1} = \frac{\pi}{4} \gamma + \frac{\pi}{4} \log{\frac{\Gamma{\left ( \frac{3}{4} \right )}^4}{\pi}} $$
Utilice el hecho que
$$\Gamma{\left ( \frac{3}{4} \right )} \Gamma{\left ( \frac{1}{4} \right )} = \sqrt{2} \pi$$
para deducir que
$$ \int_{\pi/4}^{\pi/2} dx \: \ln (\ln(\tan x)) = \frac{\pi}{2} \log{\left [\sqrt{2 \pi} \frac{\Gamma{\left ( \frac{3}{4} \right )}}{\Gamma{\left ( \frac{1}{4} \right )}}\right ]} $$