20 votos

Calculate

Demuéstralo:

$$ I=\int_0^1\frac{\log^2(1+x)\log(x)\log(1-x)}{1-x}dx=\frac{7}{2}\zeta(3){\log^22}-\frac{\pi^2}{6}{\log^32}-\frac{\pi^2}{2}\zeta(3)+{6}\zeta(5)-\frac{\pi^4}{48}\ln2 $$ Uso de la integración por piezas:

$$u=\log^2(1+x) \log x$$ thus $$du=\left[\frac{\log^2(1+x)}{x}+2\frac{\log x\log(1+x)}{1+x}\right]\,dx, v=\log^2(1-x)$$ Tenemos: $$I= \left[-\frac{1}{2} \log^2(1-x) \log x \log^2(1+x)\right]^1_0+\frac{1}{2} \int^1_0 \log^2(1-x) \log^2(1+x) \frac{dx}{x} + \int^1_0 \log x \log(1+x) \log^2(1-x) \frac{dx}{1+x}$$

¿Cómo calcular estas dos últimas integrales?

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X