26 votos

¿Cómo entender que la MLE de varianza está sesgada en una distribución gaussiana?

Ilustración PRML de cómo surge el sesgo al usar la máxima verosimilitud para determinar la varianza de una

Estoy leyendo PRML y no entiendo la imagen. ¿Podría dar algunas pistas para comprender la imagen y por qué el MLE de la varianza en una distribución gaussiana está sesgado?

fórmula 1,55: $$ \ mu_ {MLE} = \ frac {1} {N} \ sum_ {n = 1} ^ N x_n $$ fórmula 1.56 $$ \ sigma_ {MLE} ^ 2 = \ frac {1} {N} \ sum_ {n = 1} ^ {N} (x_n- \ mu_ {MLE}) ^ 2 $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X