-
Evaluar $\displaystyle\lim_{n\rightarrow \infty}\left\{\frac{1^3}{n^4}+\frac{2^3}{n^4}+\frac{3^3}{n^4}+\dots +\frac{n^3}{n^4}\right\}$ .
-
Examinar si $x^{1/x}$ posee un máximo o un mínimo y determina el mismo.
Respuestas
¿Demasiados anuncios?$${\frac{1^3}{n^4}+\frac{2^3}{n^4}+\frac{3^3}{n^4}+\dots +\frac{n^3}{n^4}}=\frac{\sum_{i=1}^{n}i^3}{n^4}=\frac{(n(n+1))^2}{4n^4}=\frac{1}{4}(1+\frac{1}{n})^2$$
$$\Rightarrow \displaystyle \lim_{n\to\infty}{\frac{1^3}{n^4}+\frac{2^3}{n^4}+\frac{3^3}{n^4}+\dots +\frac{n^3}{n^4}}=\lim_{n\to\infty}\frac{1}{4}(1+\frac{1}{n})^2=1/4$$ (Utilizando el hecho de que $\lim_{n\to\infty}1/n=0)$
$\displaystyle\lim_{n\rightarrow \infty}\left\{\frac{1^3}{n^4}+\frac{2^3}{n^4}+\frac{3^3}{n^4}+\dots +\frac{n^3}{n^4}\right\}$
\= $\displaystyle\lim_{n\rightarrow \infty}\left\{\frac{1^3+2^3+3^3+\dots +n^3}{n^4}\right\}$ = $\displaystyle\lim_{n\rightarrow \infty}\left\{\left(\frac{n(n+1)}{2n^2}\right)^2\right\}$
\= $\frac{1}{4}\displaystyle\lim_{n\rightarrow \infty}\left(1+\frac{1}{n^2} \right)^2$
\= $\frac{1}{4}$