Definir : \begin {alineado} f: \mathbb {C} \setminus\left\lbrace\frac {R}{r}, \frac {r}{R} \right\rbrace & \rightarrow\mathbb {C} \\ z& \mapsto\frac {R^{2}-r^{2}}{ \left (R-rz \right ) \left (Rz-r \right )} \end {alineado}
Desde $ r<R $ el teorema del residuo nos permite escribir : $$ \oint_{\left|z\right|=1}{f\left(z\right)\mathrm{d}z}=2\pi\,\mathrm{i}\,\mathrm{Res}\left(f,\frac{r}{R}\right) $$
Cálculo del residuo : $ \mathrm{Res}\left(f,\frac{r}{R}\right)=\lim\limits_{z\to \frac{r}{R}}\left(z-\frac{r}{R}\right)f\left(z\right)=\lim\limits_{z\to\frac{r}{R}}{\frac{R^{2}-r^{2}}{R^{2}-rRz}}=1 $ , ajuste $ z=\mathrm{e}^{\mathrm{i}\,\theta} $ da lo siguiente : $$ \frac{1}{2\pi}\int_{0}^{2\pi}{f\left(\mathrm{e}^{\mathrm{i}\,\theta}\right)\mathrm{e}^{\mathrm{i}\,\theta}\,\mathrm{d}\theta}=1 $$
Desde $ f\left(\mathrm{e}^{\mathrm{i}\,\theta}\right)\mathrm{e}^{\mathrm{i}\,\theta}=\frac{R^{2}-r^{2}}{\left(R-r\,\mathrm{e}^{\mathrm{i}\,\theta}\right)\left(R-r\,\mathrm{e}^{-\mathrm{i}\,\theta}\right)}=\frac{R^{2}-r^{2}}{R^{2}-2rR\cos{\theta}+r^{2}} $ , obtenemos : $$ \frac{1}{2\pi}\int_{0}^{2\pi}{\frac{R^{2}-r^{2}}{R^{2}-2rR\cos{\theta}+r^{2}}\,\mathrm{d}\theta}=1 $$