Me pide mostrar que si $0 < \alpha < 1$, y si $f \in \Lambda^\alpha(\mathbb{T})$, entonces tenemos para $k\neq 0$, $$|\widehat{f}(k)| \leq \pi^\alpha \frac{\|f\|_{\Lambda^1}}{k^\alpha}$$
He aplicado algunas de las propiedades de las desigualdades y las integrales, pero debe de haber conseguido un poco llevar porque mi consolidados finales terminó siendo demasiado grande como se puede ver a continuación.
Actualización: estoy cada vez más cerca. Yo no sé donde el factor de $k^\alpha$.
Se ha informado de que este teorema puede ser útil:
Teorema (Fejér): Si $f\in L_p(\mathbb T^d)$,$\|\sigma_n (f) - f\|_p \to 0$. (Aquí, $\sigma_n(f) = \frac1{n}\sum\limits_{j=0}^{n-1} D_j$).
Intento #3:
$$ \begin{align*} |\widehat{f}(k)| &= \left|\frac1{2\pi}\int_{-\pi}^\pi f(t)e^{ikt}\mathrm dt\right|\\ &\leq \frac1{2\pi}\int_{-\pi}^\pi |f(t)|\cdot|e^{ikt}|\mathrm dt\\ &= \frac1{2\pi}\int_{-\pi}^\pi |f(t)|\mathrm dt\\ &= \frac1{2\pi}\int_{-\pi}^\pi |f(t+\pi) + f(t) - f(t+\pi)|\mathrm dt\\ &\leq \frac1{2\pi}\int_{-\pi}^\pi |f(t + \pi)| + |f(t +\pi) - f(t)|\mathrm dt\\ &= \frac{\pi^\alpha}{2\pi}\int_{-\pi}^\pi \frac{|f(t + \pi)|}{\pi^\alpha} + \frac{|f(t +\pi) - f(t)|}{\pi^\alpha}\mathrm dt\\ &\leq \frac{\pi^\alpha}{2\pi}\int_{-\pi}^\pi |f(t + \pi)| + \frac{|f(t +\pi) - f(t)|}{\pi^\alpha}\mathrm dt\\ &\leq \frac{\pi^\alpha}{2\pi}\int_{-\pi}^\pi \|f\|_{\Lambda^{\alpha}}\mathrm dt\\ &= \pi^\alpha \|f\|_{\Lambda^\alpha} \end{align*} $$