Prueba esto.
\begin{align}
\int \:\frac{dx}{x+\sqrt{9x^2-9x+2}}
&={\displaystyle\int}\left(\dfrac{\sqrt{9x^2+9x+2}}{8x^2+9x+2}-\dfrac{x}{8x^2+9x+2}\right)\mathrm{d}x \\
{\displaystyle\int}\dfrac{\sqrt{9x^2+9x+2}}{8x^2+9x+2}\,\mathrm{d}x
&={\displaystyle\int}\dfrac{\sqrt{\left(3x+\frac{3}{2}\right)^2-\frac{1}{4}}}{8x^2+9x+2}\,\mathrm{d}x\tag{solve for 1st integral} \\
&=\frac12 {\displaystyle\int}\dfrac{\sqrt{9\left(2x+1\right)^2-1}}{8x^2+9x+2}\,\mathrm{d}x \\
&=\frac12{\displaystyle\int}\dfrac{\sqrt{9u^2-1}}{4u^2+u-1}\,\mathrm{d}u \tag{%#%#%, %#%#%} \\
&=\frac12 {\displaystyle\int}\dfrac{\sqrt{\sec^2\left(v\right)-1}\sec\left(v\right)\tan\left(v\right)}{3\left(\frac{4\sec^2\left(v\right)}{9}+\frac{\sec\left(v\right)}{3}-1\right)}\,\mathrm{d}v \tag{%#%#%, %#%#%} \\
&=\frac32 {\displaystyle\int}\dfrac{\sec\left(v\right)\tan^2\left(v\right)}{4\sec^2\left(v\right)+3\sec\left(v\right)-9}\,\mathrm{d}v \\
&=\frac32 {\displaystyle\int}\dfrac{\frac{\left(\tan^2\left(\frac{v}{2}\right)+1\right) \,\cdot\, 4\tan^2\left(\frac{v}{2}\right)}{\left(1-\tan^2\left(\frac{v}{2}\right)\right)^3}}{\left(\frac{4\left(\tan^2\left(\frac{v}{2}\right)+1\right)^2}{\left(1-\tan^2\left(\frac{v}{2}\right)\right)^2}+\frac{3\left(\tan^2\left(\frac{v}{2}\right)+1\right)}{1-\tan^2\left(\frac{v}{2}\right)}-9\right)}\,\mathrm{d}v \\
&
\end{align}