Deje $K = \frac{2}{1}\times \frac{4}{3}\times \frac{6}{5}\times \frac{8}{7}\times \cdots \times \frac{100}{99}.$, Entonces ¿cuál es el valor de $\lfloor K \rfloor$ donde $\lfloor x \rfloor$ es la función del suelo?
Mi Intento:
Al excluir los poderes de $2$, podemos escribir
$$ \begin{align} K &= 2^{50}\times \left(\frac{1} {1}\times \frac{2}{3}\times \frac{3}{5}\times \frac{4}{7}\times \frac{5}{9}\times\cdots\times \frac{49}{97}\times \frac{50}{99}\right)\\ &= 2^{50}\cdot 2^{25}\times \left(\frac{1\cdot 3 \cdot 5\cdots49}{1\cdot 3 \cdot 5\cdots 49}\right)\times \left(\frac{1}{51\cdot 53\cdot 55\cdots99}\right)\\ &= \frac{2^{75}}{51\cdot 53\cdot 55\cdots99} \end{align} $$
Cómo puedo solucionar para $K$ a partir de aquí?