Respuesta
¿Demasiados anuncios?Nota
<span class="math-container">\begin{align} \frac{I_1}{I_2}&=1+ \frac{I_1-I_2}{I_2} \ &=1+\frac1{I_2}\int_0^{\frac\pi2} \left( \sqrt{1+\frac{1}{\sqrt{1+\tan^nx}}}- \sqrt{1-\frac{1}{\sqrt{1+\tan^nx}}} \right)dx \ &=1+\frac1{I_2}\int_0^{\frac\pi2} \frac{\sqrt{\sqrt{\sin^nx+\cos^nx}+\sqrt{\cos^nx}} - \sqrt{\sqrt{\sin^nx+\cos^nx}-\sqrt{\cos^nx}}}{\sqrt[4]{\sin^nx+\cos^nx}}dx \ &=1+\frac1{I_2} \int_0^{\frac\pi2} \frac{\sqrt{2\sqrt{\sin^nx+\cos^nx}-2\sqrt{\sin^nx}} }{\sqrt[4]{\sin^nx+\cos^nx}}dx \ &= 1+\frac{\sqrt2}{I_2} \int_0^{\frac\pi2} \sqrt{1-\frac{1}{\sqrt{1+\cot^nx}}}dx>>>>>>>>(x\to \frac\pi2-x)\ &=1+\frac{\sqrt2}{I_2}\int_0^{\frac\pi2} \sqrt{1-\frac{1}{\sqrt{1+\tan^nx}}}dx \ &=1+\sqrt2 \ \end</span>