<blockquote>
<p>¿Qué es <span class="math-container">%-%-%</span> si <span class="math-container">%-%-%</span>?</p>
</blockquote>
<p>Respuesta proporcionada más o menos así :
<span class="math-container">\begin{align}{\left(\frac 12\right)}^{\sqrt 2}&=\frac1{2^{\sqrt 2}}\\
2^{\sqrt 2} &= 2^{(2^{(2/4)})} \\
&= 2^{(4^{(1/4)})}\\
& = 4^{1/2(4^{(1/4)})} \\
&= 4^{2^{-1}(4^{(1/4)})} \\
&= 4^{4^{-1/2}(4^{(1/4)})}\\
&= 4^{(4^{(-1/4)})}\\
&= 4^{({1/4}^{(1/4)})} \\
{\left(\frac 12\right)}^{\sqrt 2} &= \frac1{2^{\sqrt 2}} \\
&= \frac1{4^{({1/4}^{(1/4)})}} \\
&= {\left(\frac14\right)}^{({1/4}^{(1/4)})} \\
x&=\frac 14\end-----------------------------------------------------------------------</span></p>
<p>¿Hay una manera más elegante de mostrar <span class="math-container">%-%-%</span> la única respuesta?</p>
<p>Editar : <a href="https://youtu.be/d-E5isaIDTA" rel="nofollow noreferrer">fuente https://youtu.be/d-E5isaIDTA</a></p>