16 votos

Lista de enteros sin ninguna progresión aritmética de n términos

Consideremos un entero positivo nn y la lista de los n2n2 números enteros de 11 a n2n2 . ¿Cuál es el número mínimo f(n)f(n) de números enteros a ser cancelados en esta lista para que sea imposible formar cualquier progresión aritmética de nn con el resto de los números enteros?

8voto

darryn.ten Puntos 468

Extendiendo mi comentario a una respuesta para los pequeños nn un programa de fuerza bruta da

f(1)=1{1}f(2)=3{1,2,3}f(3)=4{3,4,5,7}f(4)=6{3,4,5,6,10,13}f(5)=7{3,7,9,10,11,16,21}f(6)=9{5,8,12,14,15,16,21,26,31}f(7)=11{3,9,11,12,13,14,15,22,29,36,43}f(8)=13{7,10,16,18,19,20,21,22,29,36,43,50,57}

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X