Tenemos
\begin{align}
& 2\int_0^{\pi/2}\frac{\sin x}{1+\sqrt{\sin 2x}} \, dx=\int_0^{\pi/2}\frac{\sin x+\cos x}{1+\sqrt{\sin 2x}} \, dx=\frac12\int_0^\pi\frac{\sqrt{1+\sin y}}{1+\sqrt{\sin y}} \, dy \\[6pt]
= {} &\int_0^{\pi/2}\frac{\sqrt{1+\sin y}}{1+\sqrt{\sin y}} \, dy =\int_0^1\frac{\sqrt{1+t}}{(1+\sqrt{t})\sqrt{1-t^2}} \, dt=\int_0^1\frac{dt}{(1+\sqrt{t})\sqrt{1-t}} \\[6pt]
= {} &2\int_0^{\pi/2}\frac{\cos z}{1+\cos z} \, dz=\pi-2\int_0^{\pi/2}\frac1{1+\cos z} \,dz= \pi-2\tan\frac{z}2\bigg|_0^{\pi/2}=\pi-2,
\end {align} donde usamos sustituciones$y=2x$,$t=\sin y$,$t=\cos^2 z$.